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Abstract

In advanced wireline or wireless communication systems, i.e., DSL, IEEE 802.11a/g,

HIPERLAN/2, etc., a cyclic prefix which is proportional to the channel impulse re-

sponse is needed to append a multicarrier modulation (MCM) frame for operating

the MCM accurately. This prefix is used to combat inter symbol interference (ISI). In

some cases, the channel impulse response can be longer than the cyclic prefix (CP).

One of the most useful techniques to mitigate this problem is reuse of a Channel Short-

ening Equalizer (CSE) as a linear preprocessor before the MCM receiver in order to

shorten the effective channel length.

Channel shortening filter design is a widely examined topic in the literature.

Most channel shortening equalizer proposals depend on perfect channel state infor-

mation (CSI). However, this information may not be available in all situations. In

cases where channel state information is not needed, blind adaptive equalization tech-

niques are appropriate. In wireline communication systems (such as DMT), the CSE

design is based on maximizing the bit rate, but in wireless systems (OFDM), there is

a fixed bit loading algorithm, and the performance metric is Bit Error Rate (BER)

minimization.

In this work, a CSE is developed for multicarrier and single-carrier cyclic pre-

fixed (SCCP) systems which attempts to minimize the BER. To minimize the BER,

a Genetic Algorithm (GA), which is an optimization method based on the principles

of natural selection and genetics, is used.

If the CSI is shorter than the CP, the equalization can be done by a frequency

domain equalizer (FEQ), which is a bank of complex scalars. However, in the lit-

erature the adaptive FEQ design has not been well examined. The second phase of

this thesis focuses on different types of algorithms for adapting the FEQ and modi-
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fying the FEQ architecture to obtain a lower BER. Simulation results show that this

modified architecture yields a 20 dB improvement in BER.

v



Acknowledgements

I would like to express my sincere appreciation to my faculty advisor, Dr.

Richard K. Martin, for his guidance and support throughout the course of this thesis

effort. The insight and experience was certainly appreciated. I also thank to Dr.

Steven C. Gustaffson and Maj. Michael J. Mendenhall for their contribution to my

thesis.

I would like to thank my family and my friend 1Lt. Adem Okal for their support

and latitude provided to me in this endeavor.

I do also owe my great Turkish nation for providing me the chance to attend

this education program.

Gökhan Altın

vi



Table of Contents
Page

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

List of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Multicarrier Modulation . . . . . . . . . . . . . . . . . . 1

1.1.1 Discrete Multitone . . . . . . . . . . . . . . . . 2
1.1.2 Orthogonal Frequency Division Multiplexing . . 4

1.2 Single-Carrier Cyclic Prefixed Modulation . . . . . . . . 5

1.3 Channel Shortening . . . . . . . . . . . . . . . . . . . . 7

II. Literature Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1 Channel Shortening Equalizer Design Methods . . . . . . 11

2.1.1 Minimum Mean Squared Error Method . . . . . 11

2.1.2 Maximum Shortening Signal to Noise Ratio Method 14

2.1.3 Maximum Geometric Signal to Noise Ratio Method 17

2.2 Adaptive Channel Shorteners . . . . . . . . . . . . . . . 19

2.2.1 Multicarrier Equalization by Restoration of Re-
dundancy . . . . . . . . . . . . . . . . . . . . . 21

2.2.2 Sum-Squared Auto-correlation Minimization . . 22

2.2.3 Single Lag Auto-correlation Minimization . . . . 24

2.2.4 Blind Adaptive Channel Shortening Equalizer Al-
gorithm which can Provide Shortened Channel
State Information . . . . . . . . . . . . . . . . . 25

2.3 Genetic Algorithm . . . . . . . . . . . . . . . . . . . . . 27

2.3.1 Selecting the Variables and the Cost Function . 28

2.3.2 Initial Population . . . . . . . . . . . . . . . . . 28

2.3.3 Natural Selection . . . . . . . . . . . . . . . . . 28
2.3.4 Mating . . . . . . . . . . . . . . . . . . . . . . . 30

vii



Page

2.3.5 Mutation . . . . . . . . . . . . . . . . . . . . . 30
2.3.6 The Next Generation and Convergence . . . . . 31

III. Bit-Error-Rate-Minimizing Channel Shortening using Post-FEQ Di-
versity Combining and a Genetic Algorithm . . . . . . . . . . . . 32

3.1 BER Minimizing Channel Shortening using Post-FEQ Di-
versity Combining . . . . . . . . . . . . . . . . . . . . . 33

3.1.1 Review of the RLS-MERRY Algorithm . . . . . 36

3.1.2 Adaptive FEQ . . . . . . . . . . . . . . . . . . . 39

3.2 BER Minimizing Channel Shortening with a Genetic Al-
gorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2.1 System Model . . . . . . . . . . . . . . . . . . . 48

3.2.2 BER Models . . . . . . . . . . . . . . . . . . . . 49
3.2.3 Applying Genetic Algorithm . . . . . . . . . . . 54

IV. Simulations and Results . . . . . . . . . . . . . . . . . . . . . . . 57
4.1 Results for Post-FEQ Diversity Combining . . . . . . . . 57

4.2 Results for Channel Shortening with GA . . . . . . . . . 59

4.2.1 Results of GA for Multicarrier Systems . . . . . 59

4.2.2 Results of GA for SCCP Systems . . . . . . . . 62

V. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

viii



List of Figures
Figure Page

1.1. MIMO OFDM System model. . . . . . . . . . . . . . . . . . . 4

1.2. MIMO SCCP System model. . . . . . . . . . . . . . . . . . . . 6

1.3. Channel shortening. . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1. The MMSE equalizer block diagram. . . . . . . . . . . . . . . . 12

2.2. The MSSNR design idea. . . . . . . . . . . . . . . . . . . . . . 16

2.3. Blind signal processing methods. . . . . . . . . . . . . . . . . . 20

2.4. Difference in the ISI at the received CP and at the end of the

received symbol . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5. System model for SAM. . . . . . . . . . . . . . . . . . . . . . . 23

2.6. Flowchart of a GA. . . . . . . . . . . . . . . . . . . . . . . . . 29

2.7. Two parents mate to generate two children. Then, these two

children are added to the population. . . . . . . . . . . . . . . 31

3.1. SIMO multicarrier system model. . . . . . . . . . . . . . . . . . 33

3.2. Post-FEQ diversity combining with 2 FFT. . . . . . . . . . . . 34

3.3. Post-FEQ diversity combining with individual FFT. . . . . . . 34

3.4. An example of a fading channel. . . . . . . . . . . . . . . . . . 40

4.1. MERRY Cost vs. CSE iteration . . . . . . . . . . . . . . . . . 58

4.2. BER vs. FEQ iteration after the CSE has converged . . . . . . 59

4.3. BER vs. SNR for a multicarrier system . . . . . . . . . . . . . 61

4.4. SER vs. SNR for a multicarrier system . . . . . . . . . . . . . 62

4.5. BER vs. SNR for SCCP system . . . . . . . . . . . . . . . . . 64

4.6. SER vs. SNR for aSCCP system . . . . . . . . . . . . . . . . . 65

4.7. BER vs. SNR for SCCP system . . . . . . . . . . . . . . . . . 66

4.8. SER vs. SNR for SCCP system . . . . . . . . . . . . . . . . . . 67

ix



List of Tables
Table Page

1.1. Example values of OFDM System Parameters. . . . . . . . . . 5

3.1. Rank weighting in a GA . . . . . . . . . . . . . . . . . . . . . . 55

3.2. An example of mutation and new population . . . . . . . . . . 56

x



List of Symbols
Symbol Page

L Number of Transmit Antenna . . . . . . . . . . . . . . . . 9

P Number of Receive Antenna . . . . . . . . . . . . . . . . . 9

N (I)FFT Length . . . . . . . . . . . . . . . . . . . . . . . . 9

v Cyclic Prefix Length . . . . . . . . . . . . . . . . . . . . . 9

i Subchannel Index . . . . . . . . . . . . . . . . . . . . . . . 9

∆ Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

x Received Signal . . . . . . . . . . . . . . . . . . . . . . . . 9

h Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

c = w ? h Shortened Channel . . . . . . . . . . . . . . . . . . . . . . 9

r Received Signal . . . . . . . . . . . . . . . . . . . . . . . . 9

y Output Signal . . . . . . . . . . . . . . . . . . . . . . . . . 9

(·) ? (·) Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . 9

(·)∗ Complex Conjugate . . . . . . . . . . . . . . . . . . . . . 10

(·)T Matrix Transpose . . . . . . . . . . . . . . . . . . . . . . . 10

(·)H Conjugate Transpose . . . . . . . . . . . . . . . . . . . . . 10

E{·} Statistical Expectation . . . . . . . . . . . . . . . . . . . . 10

Nvar Variable Number . . . . . . . . . . . . . . . . . . . . . . . 28

Ngene Gene Number . . . . . . . . . . . . . . . . . . . . . . . . . 28

ρ Forgetting Factor . . . . . . . . . . . . . . . . . . . . . . . 38

µ Step Size . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

e(n) Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

γ Dispersion Constant . . . . . . . . . . . . . . . . . . . . . 44

D FEQ Vector . . . . . . . . . . . . . . . . . . . . . . . . . . 46

¯ Element-by-Element Multiplication . . . . . . . . . . . . . 47

Na Active Tone Numbers . . . . . . . . . . . . . . . . . . . . 48

F FFT Operation . . . . . . . . . . . . . . . . . . . . . . . . 49

xi



List of Abbreviations
Abbreviation Page

DSL Digital Subscriber Line . . . . . . . . . . . . . . . . . . . . 1

ISI Inter-Symbol Interference . . . . . . . . . . . . . . . . . . 1

MCM Multicarrier Modulation . . . . . . . . . . . . . . . . . . . 1

DFE Decision Feedback Equalizer . . . . . . . . . . . . . . . . . 1

DSP Digital Signal Processor . . . . . . . . . . . . . . . . . . . 2

FFT Fast Fourier Transform . . . . . . . . . . . . . . . . . . . . 2

DMT Discrete Multitone . . . . . . . . . . . . . . . . . . . . . . 2

OFDM Orthogonal Frequency Division Multiplexing . . . . . . . . 2

QAM Quadrature Amplitude Modulation . . . . . . . . . . . . . 2

DFT Discrete Fourier Transform . . . . . . . . . . . . . . . . . 3

ICI Inter-Carrier Interference . . . . . . . . . . . . . . . . . . 3

CP Cyclic Prefix . . . . . . . . . . . . . . . . . . . . . . . . . 3

FIR Finite Impulse Response . . . . . . . . . . . . . . . . . . . 3

TEQ Time Domain Equalizer . . . . . . . . . . . . . . . . . . . 4

FEQ Frequency Domain Equalizer . . . . . . . . . . . . . . . . 4

FEC Forward Error Correction . . . . . . . . . . . . . . . . . . 5

MIMO Multiple Input Multiple Output . . . . . . . . . . . . . . . 5

SCCP Single-Carrier Cyclic Prefixed . . . . . . . . . . . . . . . . 5

SC-FDE Single-Carrier Frequency Domain Equalization . . . . . . . 5

BER Bit Error Rate . . . . . . . . . . . . . . . . . . . . . . . . 8

DD-LMS Decision Directed Least Mean Squared . . . . . . . . . . . 9

DD-RLS Decision Directed Recursive Least Squares . . . . . . . . . 9

MMSE Minimum Mean Squared Error . . . . . . . . . . . . . . . 11

ML Maximum Likelihood . . . . . . . . . . . . . . . . . . . . . 11

TIR Target Impulse Response . . . . . . . . . . . . . . . . . . 11

xii



Abbreviation Page

UTC Unit Tab Constraint . . . . . . . . . . . . . . . . . . . . . 12

UEC Unit Energy Constraint . . . . . . . . . . . . . . . . . . . 12

MSSNR Maximum Shortening Signal to Noise Ratio . . . . . . . . 14

Min-ISI Minimum Inter-Symbol Interference . . . . . . . . . . . . 16

Min-IBI Minimum Inter-Block Interference . . . . . . . . . . . . . 17

MDS Minimum Delay Spread . . . . . . . . . . . . . . . . . . . 17

AWGN Additive White Gaussian Noise . . . . . . . . . . . . . . . 17

MGSNR Maximum Geometric Signal to Noise Ratio . . . . . . . . 18

MERRY Multicarrier Equalization by Restoration of Redundancy . 21

SAM Sum-Squared Auto-correlation Minimization . . . . . . . . 22

SLAM Single Lag Auto-correlation Minimization . . . . . . . . . 24

BACS-SI Blind Adaptive Channel Shortening Equalizer Algorithm

with State Information . . . . . . . . . . . . . . . . . . . . . . 25

GA Genetic Algorithm . . . . . . . . . . . . . . . . . . . . . . 27

CSE Channel Shortening Equalizer . . . . . . . . . . . . . . . . 32

SIMO Single-Input Multiple-Output . . . . . . . . . . . . . . . . 33

LMS Least Mean Square . . . . . . . . . . . . . . . . . . . . . . 40

RLS Recursive Least Squares . . . . . . . . . . . . . . . . . . . 41

CMA Constant Modulus Algorithm . . . . . . . . . . . . . . . . 44

IR Iteratively Reweighted . . . . . . . . . . . . . . . . . . . . 47

GN Gauss-Newton . . . . . . . . . . . . . . . . . . . . . . . . 47

MER Minimum Error Rate . . . . . . . . . . . . . . . . . . . . . 47

xiii



Bit-Error-Rate-Minimizing Channel Shortening

Using Post-FEQ Diversity Combining and A Genetic

Algorithm

I. Introduction

M
ultimedia applications and the development of the Internet have led to the

need for high speed and wide band digital communications. Development of

these technologies and the need to get information in very short times shows that the

demand for wide band technologies will increase.

This demand for high speed communication induces service providers to provide

high-quality low-cost systems. Thus, communication systems have improved from

voice band applications to Digital Subscriber Lines (DSL) and wireless networking [1].

1.1 Multicarrier Modulation

High speed communications require broad band channels, in which Inter-Symbol

Interference (ISI) is one of the main problems. This undesirable effect causes neigh-

boring symbols to interfere with each other at the receiver. In frequency domain, this

effect varies the magnitude and phase response of the channel. If ISI is not inhib-

ited, it causes information losses. Channel equalization and Multicarrier Modulation

(MCM) are two approaches to combat ISI [2].

In channel equalization, an equalizer filter is used to undo the spectral shaping

effect of the channel. For this purpose, two approaches, i.e., linear and nonlinear

equalizer structures, are considered in the literature. Although nonlinear equalizers,

e.g., Decision Feedback Equalizers (DFE), give better results in channel equaliza-

tion, they have high computational complexity, especially under high sampling rates.

Therefore, linear equalizers, which are relatively simpler than the others, have gained

more popularity [3, 4].
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In narrow band systems, the channel can be considered flat and the ISI will

not occur. Additionally, the communication speed can be reduced as well to decrease

occurrence of the ISI. In this case, the balance between the wide band, high speed with-

ISI systems and narrow band, low speed without-ISI systems can be made by MCM.

In MCM, the channel is partitioned into small bandwith channels called subchannels.

If a subchannel is narrow enough, then the subchannels are independent from each

other and the ISI would not occur in these low speed subchannels. Thus, information

can be transmitted in these subchannels without ISI and the total number of bits is

the sum of the bits transmitted over these subchannels.

Reasons for MCM popularity are [1]:

• MCM performs channel equalization easily, by scalars rather than a filter,

• It controls the power and the number of bits in the subchannels and thus uses

the bandwith efficiently,

• Due to its long symbol duration, it is resistant to impulsive noise and fading,

• Advancements in Digital Signal Processors (DSP) have made it very easy to

implement MCM.

The Fast Fourier Transform (FFT) is one of the efficient ways to divide a channel

into the numerous of subchannels. If an FFT is used to implement multicarrier

modulation, it is called Discrete Multitone (DMT) or Orthogonal Frequency Division

Multiplexing (OFDM). DMT is generally used for wireline systems and OFDM is used

for wireless systems. The main differences between these applications are assignment

of the power and loading the bits into subchannels.

1.1.1 Discrete Multitone. Discrete multitone is an MCM method in which

the communication channel is divided into a large number of subchannels via an FFT.

The input bit stream in the transmitter is buffered and mapped into a N/2× 1 com-

plex vector Xi at time i using a modulation method, such as Quadrature Amplitude

Modulation (QAM) in ADSL. The process of mapping, partitioning the bit stream

2



into complex values, and assigning it to the subchannels according to SNR, such that

high SNR subchannels receive more bits than low SNR ones, is called bit loading. The

complex-valued symbols can be considered in the frequency domain, but complex val-

ued symbols are modulated to time domain. Using N/2 independent modulators is

very expensive, and instead, modulation can be done via Discrete Fourier Transform

(DFT). DFT can be implemented efficiently by an N -point FFT.

In order to get time domain samples, the X̃∗
i which is the mirrored and conjugate

symmetric version of Xi is grouped with Xi to obtain a N×1 length, X̂i =
[
XT

i X̃∗T
i

]T

vector, then this vector is sent to the input of the inverse-FFT (IFFT) block. The X̂i

vector which is ready to send over a telephone line at the end of the IFFT has real

valued DMT symbols.

As is well known, convolution in time domain is equivalent to multiplication in

frequency domain after Fourier transform. The same relation is true for the DFT, but

as a circular convolution. In a communication system, due to the fact that sending the

data symbols over a channel causes linear convolution, it is not quite a multiplication

of received signals in the frequency domain after the DFT. To address this problem,

the transmitted signal should be converted to a circular form.

If the length of the channel impulse response is less than or equal to v + 1, ISI

is completely eliminated by adding a guard period of length v. Additionally, if this

guard period is chosen as the copy of the last v samples of a DMT frame, the signal

is circular and Inter-Carrier Interference (ICI) does not occur. This type of guard

period is called Cyclic Prefix (CP). The group of N + v samples in time domain is

named a DMT frame, and frames are sent through the channel sequentially.

The CP of v samples reduces the data rate by a factor of N/(N + v). In

order to eliminate the ISI, a long guard period should be added in a relatively long

channel, but this long guard period reduces the data rate. To solve this dilemma,

an equalizer which shortens the channel impulse response to the length v or less is

added to the receiver as a processor. This Finite Impulse Response (FIR) filter, called

3



Figure 1.1: MIMO OFDM system model [12].

the Time Domain Equalizer (TEQ), shortens the equalized channel impulse response

to the predetermined CP length or less. Although TEQ shortens the channel in the

time domain, phase deviation and magnitude attenuation are still present in each

subchannel in the frequency domain. These variations can be removed by using a

Frequency Domain Equalizer (FEQ) [1,5, 6].

1.1.2 Orthogonal Frequency Division Multiplexing. Orthogonal Frequency

Division Multiplexing (OFDM) is an MCM method similar to DMT. OFDM is popular

for wireless systems such as IEEE 802.11a/g wireless LAN, HIPERLAN/2, MMAC

[7], wireless metropolitan area networks (IEEE 802.16) [8], digital video and audio

broadcasting in Europe [9,10], satellite radio (e.g., Sirius and XM Radio) [11], and it

is the proposed standard for multiband ultrawideband (IEEE 802.15.3a). OFDM is

a frequency division multiplexing method in which the available bandwith is divided

into numerous nearly orthogonal subchannels. As in DMT, the modulation in OFDM

can be done using FFT/IFFT pairs. An OFDM symbol includes the data and the

cyclic prefix, and ISI/ICI can be eliminated using the cyclic prefix similarly in DMT.

Bit loading to the subchannels is based on the SNR in DMT, but the number of bits

in each subchannel is equal and constant in OFDM [5].

As a wireless application, OFDM faces multipath delay spread; therefore the

received symbols are the summation of the replicas of the transmitted signal. If the

4



Table 1.1: Example values of OFDM System Parameters for
IEEE 802.11a [13].

Parameters Value

Ratified Year 1999
Frequency Range 4615-5825 MHz
Channel Spacing B 20 MHz
Number of Subcarriers N 52
Modulation BPSK, QPSK, 16-QAM, 64-QAM
Useful Symbol Length TU 3.2 µs
Additional Guard Interval TG 0.8 µs
Subchannel Spacing 312.5 kHz
Data Rate 6-54 Mbps
Link Spectral Efficiency R/B 0.30-2.7 bit/s/Hz
Inner FEC Conv Coding with code rates 1

2
, 2

3
, 3

4

CP is longer than the delay spread, ISI/ICI does not occur. In some certain frequency

bands, the multipath fading channels have deep nulls. These nulls force the OFDM

subchannels to be unable to carry data. One way to mitigate this undesirable effect

is Forward Error Correction (FEC) technique. Another way is frequency domain

interleaving, which spreads the information into the various subchannels to increase

the probability of correct data decoding. An OFDM receiver performs time domain

equalization to reduce the channel length, to simplify decoding, and to reduce the

delay spread [5].

A block diagram of an Multiple Input Multiple Output (MIMO) OFDM system

is shown in Fig.1.1. The parameters standardized for the OFDM (IEEE 802.11a) are

in Table 1.1.

1.2 Single-Carrier Cyclic Prefixed Modulation

Single-Carrier Cyclic Prefixed (SCCP) modulation is also known as Single-

Carrier Frequency Domain Equalization (SC-FDE). SCCP modulation has not been

studied extensively, but it is gaining importance in the literature.

5



Figure 1.2: MIMO SCCP system model [12].

A SCCP system model is shown in Fig. 1.2. The concept of SCCP looks similar

to that of OFDM, but the IFFT is removed from the transmitter and placed at the

receiver, after the FEQ. As a result, there are no null tones as in OFDM, due to the

fact that the transmitter operates completely in the time domain.

Moreover, OFDM is not very effective in deep fading channels due to the deep

nulls, and it requires error correction coding with frequency domain interleaving. In

contrast, SCCP systems can work without error correction coding [14].

The use of SC modulation and Frequency Domain Equalization (FDE) by
processing the FFT of the received signal has several attractive features:

• SC modulation has reduced peak to average ratio requirements from
OFDM, thereby allowing the use of less costly power amplifiers,

• Its performance with FDE is similar to that of OFDM, even for very
long channel delay spread,

• Frequency domain receiver processing has a similar complexity re-
duction advantage to that of OFDM: complexity is proportional to
log of multipath spread,

• Coding, while desirable, is not necessary for combatting frequency
selectivity, as it is in nonadaptive OFDM,

• SC modulation is a well-proven technology in many existing wireless
and wireline applications, and its RF system linearity requirements
are well known [15].
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Figure 1.3: Channel shortening.

1.3 Channel Shortening

The goal of the full channel equalization is to prevent the corruptive effect

of the ISI channel with an equalizer. In other words, convolution of the channel

and the equalizer is converted to a Kronocker delta function (δ(∆)), i.e., an impulse

function [16] (Here, ∆ is a convenient delay and is a design parameter.).

In a multicarrier system, there is no need to equalize the channel fully. Instead,

shortening the channel to a predetermined length by designing an equalizer as a pro-

cessor in the receiver is more suitable for system efficiency. Designing an equalizer

with this goal is called channel shortening. The channel shortening idea is shown in

Fig. 1.3.

Channel shortening first appeared in 1970s to reduce the complexity of Viterbi

algorithm [17], then in 1990s it became a current issue with multicarrier modulation

[18]. Channel shortening in recent years came into use for multiuser detection [19].

CSEs are used for compututional complexity reduction for multiuser detection by

blocking the signals from a subset of users and detecting the remainder. Channel

7



shortening is also used to reduce the complexity of ultra wideband systems. A pulse

is reduced by shortening the multipath channel, reducing the number of correlators

needed ultra wideband systems [20]. Also, as in acoustics, a channel shortener can be

used to optimize the D50-measure, defined by psychoacoustics, for the intelligibility

of speech as the ratio of energy in a 50-ms window of the room impulse response to

the total energy of the impulse response [21].

The channel impulse response should be known in the channel shortening system

models; therefore a training sequence is sent with the transmitted symbol. However,

in some cases (e.g., DVB), the receiver can not fully receive the training sequence

in the time domain [22]. On the other hand, to send this training sequence with

information bearing signals reduces the channel capacity. For these reasons, blind,

adaptive channel shortening techniques without training and channel knowledge have

been proposed.

Early channel shortening techniques were based on heuristic objective functions.

In recent algorithms, the goal is maximizing the bit rate for a given Bit Error Rate

(BER), which is a proper performance measurement in wireline multicarrier systems,

i.e., DSL [23–25]. In contrast, wireless multicarrier, i.e., OFDM, and SCCP systems

have a fixed bit loading algorithm, and the performence metric is the BER for a fixed

bit rate. Additionally, the CSE can be updated to minimize the BER for the initial

bit loading even in DSL. Here, in Chapter 3, a BER minimizing CSE for multicarrier

and SCCP systems is investigated.

In Chapter 2, early channel shortening equalizer design algorithms are reviewed.

The Minimum Mean Squared Error (MMSE) method [17], the Maximum Shortening

Signal to Noise Ratio (MSSNR) method [26], and the Maximum Geometric Signal to

Noise Ratio (MGSNR) [27] method are summarized. Also, adaptive channel short-

eners, Multicarrier Equalization by Restoration of Redundancy (MERRY) [28], Sum-

Squared Auto-correlation Minimization (SAM) [29], Single Lag Auto-correlation Min-

imization (SLAM) [30], and Blind Adaptive Channel Shortening Equalizer Algorithm
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which can provide Shortened Channel State Information (BACS-SI) [31] methods,

are reviewed. Finally, the Genetic Algorithm (GA) which is an optimization method

based on the principles of natural selection and genetics, is described.

Chapter 3 is separated into two parts. As stated earlier, the channel delay

spread must be shorter than the CP. If the channel can be shortened with an CSE,

the equalization can be done by an FEQ, which is just a bank of complex scalars.

The first part of Chapter 3 proposes to modify an OFDM system architecture to

obtain a lower BER. Three types of adaptation rules, i.e., Decision Directed Least

Mean Squared (DD-LMS), DD-Recursive Least Squares (DD-RLS), and Constant

Modulus Algorithm (CMA), are derived for the new architectures and are used to

adapt FEQs. To provide the minimum BER, different types of diversity combining

are considered. The second part of chapter 3 proposes to design a CSE adapted with

a Genetic Algorithm (GA) to obtain minimum BER.

Chapter 4 provides the simulation results. In simulations, the BER performance

of DD-LMS, DD-LMS and CMA algorithms is compared with the Adaptive Minimum

Mean Squared Algorithm (A-MMSE) [17] for reference. The BER performance for GA

is presented as well. Simulation results show that the proposed post-FEQ combining

technique has a two order of magnitude improvement, i.e., 20 dB, in BER. Chapter 5

concludes the thesis.

The notation used in this thesis are as follows:

• We assume MIMO channel model with L transmit antennas and P receive an-

tennas.

• N is the (I)FFT length, v CP length, i subchannel index and ∆ delay.

• Vectors are bold, lower case; matrices are bold, upper case; and x, h, c = w ? h,

r and y are CSE with length Lw, channel with length Lh, shortened channel with

length Lc = Lw + Lh− 1, received signal and the output of a CSE, respectively.

Here, (·) ? (·) denotes convolution.

9



• (·)∗, (·)T and (·)H denote complex conjugate, matrix transpose and conjugate

transpose, respectively, and E{·} denotes statistical expectation.

Part of this thesis has been presented at the 42nd Asilomar Conference on Sig-

nals, Systems and Computers, Asilomar Hotel and Conference Ground, Pacific Grove,

CA, October 26th-29th, 2008 and has been submitted to IEEE Communications Let-

ters. Also, the thesis will be submitted to IEEE Transactions on Signal Processing.
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II. Literature Survey

2.1 Channel Shortening Equalizer Design Methods

Because of its simplicity, the Minimum Mean Squared Error (MMSE) method

is a well studied method in the literature [17]. The MMSE minimizes the error

of the equalizer after the channel and a Target Impulse Response (TIR), which is

a design parameter. Also, Adaptive MMSE design methods are commonly used in

practical systems. The Maximum Shortening Signal to Noise Ratio (MSSNR) method

[26] minimizes the energy of the part of the channel impulse response that causes

Inter Symbol Interference (ISI). Both the MMSE and the MSSNR do not attempt

to maximize channel capacity. Al-Dhahir and Cioffi [27] propose a method called

Maximum Geometric SNR (MGSNR) to shorten the channel impulse response while

maximizing the bit rate.

Other methods proposed in the literature are Min-ISI [23], Min-IBI [32], Maxi-

mum Bit Rate (MBR) [23], Dual Path and Per Tone Equalizers (PTE) [33].

2.1.1 Minimum Mean Squared Error Method. The computational complex-

ity of the Viterbi algorithm is exponential in the length of channel impulse response.

This complexity can be reduced by a processor in the receiver. Falconer and Magee [17]

propose the MMSE method to shorten the channel impulse response for Maximum

Likelihood (ML) receivers. After Falconer and Magee, Chow and Cioffi apply this

method to MCM [34].

The design idea of the MMSE method is shown in Fig. 2.1. The system ar-

chitecture consists of two Finite Impulse Response (FIR) filters. One is in the upper

branch after the channel and the other is in the lower branch as a Target Impulse

Response (TIR). The convolution of the channel and the filter in the upper branch

is called the equalized channel impulse response. The lower branch is only for design

concern and is a virtual branch. The goal of the method is to find the equalizer (Time

Domain Equalizer, (TEQ)) coefficients which minimize the error between the signals

of the output of the equalizer and the output of the TIR.
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Figure 2.1: The MMSE equalizer block diagram.

In order to understand the idea behind the MMSE method, assume that the

error is zero for an input signal. In this case, the impulse responses of both branches

are equal. Thus, the equalized channel impulse response (upper branch) is equal to

the delayed version of the TIR. In other words, if the coefficients of the TIR are chosen

as (predetermined) fixed length, the channel impulse response is forced to the same

length.

Setting the taps of equalized channel impulse response and the TIR to zero

forces the error to zero. In this case, information can not be received at the receiver.

One of the proposed solutions is to impose a unit tap constraint (UTC) [34]. A better

solution is a unit energy constraint (UEC) that the norm of the TIR is a constant

(usually 1) [35,36].

The FIR output of the channel is

rn = Hxn + nn. (2.1)

Here, H is the channel convolution matrix, xn is the transmitted signal, and nn is

noise. The output of the nw length equalizer, w = [ w0 w1 · · · wnw−1 ]T is

y(n) = wT rn = wTHxn + wTnn . (2.2)
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Here




rnw−1

rnw−2

...

rn




=




h0 · · · hnh
0 · · · 0

0 h0 · · · hnh
0 · · ·

...
. . . . . . . . . . . .

...

0 · · · 0 h0 · · · hnh







xnh+nw−1

xnh+nw−2

...

xn




+




nnw−1

nnw−2

...

nn




(2.3)

is the received signal. Assuming the nb length TIR as b = [b0 b1 · · · bnb−1]
T , and

augmented TIR with ∆ as b̃ = [01×∆ bT 01×(nh+nw−1−nb−∆)]
T , (0 is the matrix of

zeros), the output of the lower branch at time n is

ŷ(n) = b̃Txn. (2.4)

Using equations (2.1) and (2.4) and assuming that the signal and the noise are inde-

pendent, the mean squared error (MSE) between the output of the equalizer and the

TIR is

MSE(w,b) =E
{
ε(n)2

}
= E

{
(y(n)− ŷ(n))2}

=E

{((
wTHxn + wTnn

)− b̃Txn

)2
}

=
[
b̃T −wTH

]
Rxx

[
b̃−HTw

]
+wTRnnw. (2.5)

To find optimum equalizer taps, the gradient of MSE with respect to w is set to zero:

w =
[
HRxxH

T + Rnn

]−1
HRxxb̃. (2.6)

By substituting (2.6) into (2.5),

MSE(b) = bTR∆b, (2.7)

where R∆ = ΓT
[
R−1

xx + HTR−1
nnH

]−1
Γ, in which Inb+1 is the nb + 1 identity matrix

and Γ =
[
0(nb+1)×∆ Inb+1 0(nb+1)×(nw+nh−∆−nb−1)

]T
.
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Equation (2.7) is minimized for b = 0, but some constraints should be applied

against this trivial solution.

2.1.1.1 Unit Tap Constraint (UTC). Al-Dhahir and Cioffi [35] define

ei = [01×(i−1) 1 01×(nb−1−i)] as the ith unit vector to obtain this solution. Using

the Lagrangian, one can find i which is a value that minimizes the MSE as

iopt = arg max
0≤i≤v

{
R−1

∆ (i, i)
}

(2.8)

where i ∈ [0, v] and R−1
∆ (i, i) is the ith element of the diagonal matrix R−1

∆ . The

optimum b is

bopt =
R−1

∆ eiopt

R−1
∆ (iopt, iopt)

. (2.9)

wopt can be found to substitute b = bopt in (2.6).

2.1.1.2 Unit Energy Constraint (UEC). Instead of UTC, the unit

energy constraint, bTb =1 can be used. Again using the Lagrangian and taking the

gradient with respect to b and setting it to zero yields the solution which is the eigen-

vector corresponding to the minimum eigenvalue of R∆. Here, the minimum value of

the MSE, MSE = bTR∆b = bT λb =λ, can be thought as the minimum eigenvalue

of R∆. Therefore, TIR, b, should be chosen as the eigenvector corresponding to this

eigenvalue.

2.1.2 Maximum Shortening Signal to Noise Ratio Method. Melsa, Younce

and Rohrs [26] propose the Maximum Shortening Signal to Ratio (MSSNR) method

to find a TEQ which keeps the energy inside a target window constant and minimizes

the energy of the Shortened Impulse Response (SIR) outside the target window.
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The signal is defined as the portion of the channel within the window:

hwin =




h∆ h∆−1 · · · h∆−nw+1

h∆+1 h∆+2 · · · h∆−nw+2

...
...

. . .
...

h∆+v h∆+v−1 · · · h∆−nw+v+1







w0

w1

...

wnw−1




= Hwinw, (2.10)

and the portion outside the window is

hwall =




h0 0 · · · 0

h1 h0 · · · 0
...

...
...

h∆−1 h∆−2 · · · h∆−nw

h∆+v+1 h∆+v · · · h∆−nw+v+2

...
...

hnc−1 hnc−2 · · · hnc−nw+1

0 hnc−1 · · · hnc−nw+2

...
...

...

0 0 · · · hnc−1







w0

w1

...

wnw−1




= Hwallw (2.11)

The energy inside and outside the window is

hT
winhwin =wTHT

winHwinw = wTBw

hT
wallhwall =wTHT

wallHwallw = wTAw. (2.12)

The SSNR is

SSNR =
wTBw

wTAw
. (2.13)

MSSNR minimizes the energy of the denominator of SSNR while keeping the

energy of the numerator of SSNR equal to 1. The solution (details can be found
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Figure 2.2: The MSSNR design idea.

in [26]) is

wopt =
(√

B
)−1

zmin (2.14)

where
√

B is the Cholesky decomposition of B and zmin is the eigenvector correspond-

ing to the minimum eigenvalue of (
√

B)−1A(
√

BT )−1 .

MSSNR minimizes the portion of the SIR that causes ISI. If the energy outside

the target window is zero, the channel is shortened and the ISI is totally eliminated.

Being zero of the outside of the window is the optimum solution and with this solution,

ISI can be eliminated and the maximum channel capacity can be obtained. In practice

this solution can not be achieved. For this reason, and because noise is ignored, the

MSSNR is not guaranteed to maximize the channel capacity.

2.1.2.1 Extensions of the MSSNR Method. The MSSNR method has

many extensions. The Minimum Inter-Symbol Interference (Min-ISI) evaluates the

residual energy in the tails of the channel in the frequency domain and aims to place

the extra energy in unused frequency bins. In this case, the A and B matrices are

more complicated. Details of this method can be found in [23].
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The Minimum Inter-Block Interference (Min-IBI) method [32] shapes the inter-

block interference power, which increases linearly with the distance of the channel

taps from the bounderies of the length v + 1 desired non-zero window. The A and B

matrices are similar to MSSNR except with a linear weighting matrix

A =HT
wallQibiHwall

B =HT
winHwin,

(2.15)

where Qibi is a diagonal matrix

Qibi = diag
[

∆, ∆− 1, · · · , 01×(v+1), 1, 2, · · · , nc − v −∆
]
. (2.16)

Another extension of the MSSNR method is the Minimum Delay Spread (MDS)

algorithm [37]. This method minimizes the root mean square (RMS) delay spread of

the effective channel, with a norm constraint on it. The A and B matrices are

A =HT
wallQmdsHwall

B =HTH,
(2.17)

where Qmds is a diagonal matrix

Qibi = diag
[

η2, (η − 1)2, · · · , 1, 0, 1, · · · , (nc − η)2

]
(2.18)

and where η is a design parameter indicating the desired center of mass or centroid

of the channel impulse response.

2.1.3 Maximum Geometric Signal to Noise Ratio Method. In a multicarrier

system, if the number of subchannels is large, it can be assumed that the subchannels

are flat. Then each subchannel can be modeled as an Additive White Gaussian Noise

(AWGN) channel . The achievable channel capacity of a multicarrier channel is the
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sum of the capacities of the AWGN channels

bDMT =
∑
i∈S

log2

(
1 +

SNRMFB
i

Γ

)
bits/symbol, (2.19)

where i is the subchannel index, S is the set of the indices of the used subchannels,

SNRMFB
i is the match filter bound of the ith subchannel, and Γ is the SNR gap for

achieving the Shannon channel capacity [38].

Al-Dhahir and Cioffi propose the Maximum Geometric Signal to Noise Ratio

(MGSNR) method [27]. Their goal is maximizing the channel capacity based on the

geometric SNR definition

GSNR = Γ




[∏
i∈S

(
1 +

SNREQ
i

Γ

)]1/N

− 1


 . (2.20)

Using (2.20), channel capacity can be rewritten as

bDMT = N log2

(
1 +

GSNR

Γ

)
bits/symbol, (2.21)

which shows that all of the subchannels perform like N AWGN channels with each

channel having SNR as GSNR. So, maximizing the GSNR means maximizing channel

capacity. In (2.20) SNRMFB
i is modified to include the effect of the equalizer.

Due to the use of several approximations, this algorithm does not truly maximize

the bit rate. However, it is the first method that attempts to maximize the bit rate.

Details of this method can be found in [27].

There are other equalizer design methods in the literature. Van Acker, et al. [33]

propose a method called Per Tone Equalizer (PTE) using a bank of equalizer after the

FFT to equalize a multicarrier system instead of a single filter. Similar to this method,

Milosevic et al. [39] propose the Time Domain Equalizer Filter Bank (TEQ-FB).
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Arslan et al. [23] propose a Maximum Bit Rate (MBR) design which very nearly

maximizes the bit rate. However, like MGSNR, MBR also uses some approximations

to maximize the bit rate, which make the algorithm not quite optimal.

2.2 Adaptive Channel Shorteners

Most of the channel shortener design methods in the literature assume the chan-

nel impulse response, including the methods in Section 2.1. This condition is seen

in (2.6), (2.12) and (2.14) as observing the channel directly and can be managed by

estimating the channel. Therefore, a training sequence should be sent with the trans-

mitted signal to the receiver. Hence, the receiver estimates the channel with a copy

of this training sequence and a decision criterion. But, sending the training sequence

without information to estimate the channel reduces the bandwith. For instance, 18%

of the data in a time frame in a GSM system and 5% of an ADSL system is used for

the training [40].

Also, if a channel changes faster, i.e. in wireless systems, training should be sent

more frequently to estimate the channel effectively [41]. Thus, there are blind and

semi-blind methods in channel equalization techniques. Blind means that a training

sequence is not sent and the channel is estimated without using this training. Instead

of a training sequence, statistics or structural characteristics of the transmitted signal

are used in these systems. Since training is not used in the transmitted signals,

more information can be sent in a frame. In semi-blind techniques, in order to track

the frequent channel changes and to estimate the channel, relatively short training

sequence or pilot tones are used. Semi-blind methods converge faster than (full) blind

methods.

A decision about which signal characteristic or adaptive algorithm to use can

be made in the design of blind or semi-blind methods. The most used structures in

blind techniques for maximum likelihood estimation are moment, least mean square,

maximum likelihood and minimum mean squared estimators. The most used adaptive

algorithms are statistical gradient algorithms, recursive estimators, i.e., Recursive
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Figure 2.3: Blind signal processing methods [40].

Least Squares (RLS), Kalman filter, sub-space methods and expectation maximization

algorithms. Some categories of signal characteristics used in blind techniques are

shown in Fig 2.3.

While adaptive channel equalization is well-covered in the literature, adaptive

channel shortening is not well-covered [41]. De Courville, et al. [42], propose a blind,

adaptive equalizer for multicarrier receivers, but this design shortens the channel to

a single spike instead of shortening the channel.

The most important channel shortening studies include the following. The Mul-

ticarrier Equalization by Restoration of Redundancy (MERRY) algorithm uses peri-

odicity in a symbol due to the cyclic prefix [28]. The Sum-squared Autocorrelation

Minimization (SAM) algorithm [29] minimizes the squared autocorrelation function

of the shortened channel impulse response. The Single-Lag Autocorrelation Mini-

mization (SLAM) algorithm [30] proposes a different solution in the context of the

SAM and Blind Adaptive Channel Shortening Equalizer Algorithm which can Pro-

vide Shortened Channel State Information, (BACS-SI) [31] algorithm combines the

advantages of the MMSE and SAM algorithms while eliminating their disadvantages.
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Figure 2.4: Difference in the ISI at the received CP and at
the end of the received symbol [28].

2.2.1 Multicarrier Equalization by Restoration of Redundancy. The Multi-

carrier Equalization by Restoration of Redundancy (MERRY) algorithm uses redun-

dancy which occurs due to the cyclic prefix. Thus, when v length cyclic prefix is

added to the information signal which has N block length, the transmitted signal is

periodic in N + v samples. This periodicity is necessary to provide the orthogonality

of subchannels [43]. After adding the CP, last and first v samples in a symbol are

identical:

x(Mk + n) = x(Mk + n + N), n ∈ {1, 2, . . . , v} , (2.22)

where M = N + v is the total symbol duration and k is the MCM symbol (block)

index.

This idea can be seen in Fig. 2.4 for N = 8, v = 2 and M = N + v = 10 when

k = 0. For channel impulse response h, transmitted signal x, noise n equalizer w and

shortened channel, c = h ? w, the received signal r is

r(Mk + n) =

nh∑

l=0

hlx(Mk + n− l) + n(Mk + n), (2.23)

and the output of the equalizer y is

y(Mk + n) =
nw∑
j=0

wjr(Mk + n− j). (2.24)
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Because the different ISI effect to the CP and the last v samples of a symbol, the

relationship in (2.22) is destroyed by ISI. For example, the 2nd and 10th samples are

identical in Fig. 2.4. However, if the channel is longer than the CP, i.e. nh = 5

and v = 2 in figure, the interfering samples before sample 2 are different from the

interfering samples before sample 10. If h2, h3 and h4 equal zero, then y(2) = y(10).

Hence, y(2) = y(10) means h2 = h3 = h4 = 0, and the effective channel is as short as

CP. The MERRY cost function is

JMERRY = E |y (Mk + v + ∆)− y (Mk + v + N + ∆)|2 , ∆ ∈ {0, . . . ,M − 1} ,

(2.25)

where ∆ represents delay. If a statistical gradient descent algorithm is applied to this

cost function, the MERRY algorithm is:

Given ∆, for symbol k = 0, 1, 2, . . .

r̃(k) = r(Mk + v + ∆)− r(Mk + v + N + ∆)

e(k) = wT (k)r̃(k)

ŵ(k + 1) = w(k)− µe(k)r̃∗(k)

w(k + 1) =
ŵ(k + 1)

‖ŵ(k + 1)| ,

(2.26)

where r(n) =
[

r(n) r(n− 1) . . . r(n− nw)
]T

and the ‖w‖ = 1 constraint (unit

norm constraint) is aplied in the last step to eliminate the trivial solution w = 0.

2.2.2 Sum-Squared Auto-correlation Minimization. Even though it is very

simple, there are some disadvantages to MERRY algorithm, such the need for synchro-

nization, the assumption a relatively time-invariant channel (since it updates symbol

by symbol) and slow convergence. Alternatively, the Sum-Squared Auto-correlation

Minimization (SAM) algorithm, which is based on suppressing the autocorrelation of

the received signal outside a target window of size v + 1, is proposed [22,29].
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Figure 2.5: System model for SAM.

The system model is shown in Fig. 2.5, where x(n), h, r(n), w and y(n) are

shown as transmitted signal, FIR channel of length nh, recieved signal, equalizer

of length nw and the equalized signal, respectively. The effective channel of length

nc = nh + nw − 1 is c = h ? w. The TEQ is designed to shorten the effective channel

c to the length of CP plus one (v + 1).

If the received signal is

r(n) =

nh∑

k=0

h(k)x(n− k) + n(n) (2.27)

and the output of the TEQ is

y(n) =
nw∑

k=0

w(k)r(n− k) = wT rn, (2.28)

where rn =
[

r(n) r(n− 1) . . . r(n− nw)
]T

, then the autocorrelation function is

Rcc(l) =
nc−1∑

k=0

c(k)c(k − l). (2.29)

Being zero for the outside coefficients of a window of length v + 1 of the effective

channel c, and being zero for the outside autocorrelation values of length 2v + 1 of

Rcc, are identical:

Rcc(l) = 0, ∀|l| > v . (2.30)
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The constraints, ‖c‖2
2 = 1 or Rcc(0) = 1, are applied to the effective channel or

the autocorrelation function to avoid the trivial solution. The SAM cost function is

defined as

JSAM =
nc−1∑

l=v+1

|Rcc(l)|2 . (2.31)

If we assume the noiseless scenario, the cost function is

JSAM =
nc−1∑

l=v+1

|Rcc(l)|2 =
nc−1∑

l=v+1

|Ryy(l)|2 , (2.32)

The steepest descent algorithm according to (2.32) is

wnew= wold − µ∇w

(
nc−1∑

l=v+1

|Ryy(l)|2
)

, (2.33)

where µ is step size and ∇ denotes gradient with respect to w. The expectation

operation can be replaced with Moving Average (MA) or Auto-regressive (AR) esti-

mates to implement the algorithm. This impementation and the details of the SAM

algorithm are in [22,29].

2.2.3 Single Lag Auto-correlation Minimization. For the SAM algorithm,

suppressing the outside coefficients of a target window of the autocorrelation function

means keeping the effective channel length in this window. Thus, the first outside

coefficient of a target window of autocorrelation function gives the effective channel

of that length. In other words, looking at the first coefficient outside a target window

shows whether the channel is shortened or not. The Single Lag Auto-correlation

Minimization (SLAM) algorithm uses this idea [30].

The system model is the same as Fig. 2.5 and the cost function is

JSLAM = |Rcc(l)|2 , l = v + 1, (2.34)

where just l = v + 1 lag of the autocorrelation function is minimized.
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SLAM is a variation of SAM and keeps all the advantages and disadvantages of

SAM, but has lower complexity.

2.2.4 Blind Adaptive Channel Shortening Equalizer Algorithm which can Pro-

vide Shortened Channel State Information. Due to a major shortcoming of the blind

algorithms (MERRY, SAM, SLAM), Toker and Altın proposed the Blind Adaptive

Channel Shortening Equalizer Algorithm which can provide Shortened Channel State

Information (BACS-SI) [31] to provide a shortened channel impulse response after

shortening.

Although the blind algorithms mentioned above develop TEQ and sucessfully

shorten the channel, they do not provide the shortened channel impulse response

after shortening, which is necessary for a proper design of an FEQ. In contrast, the

proposed BACS-SI algorithm can both shorten the channel in a blind manner and

also explicitly provides the shortened channel impulse response.

As a result of the blind nature of the problem, the optimal solution (e.g., in the

sense of maximum bit rate) cannot be directly found due to the lack of prior channel

knowledge. Hence, the algorithm is proposed in two phases. In the first phase, a

stochastic gradient descent algorithm is derived to find an arbitrary minimum of the

surface. In the second phase of the algorithm, a global search technique is proposed

based on Genetic Algorithm (GA).

This algorithm combines the advantages of the MMSE and the SAM algoritm,

while eliminating their disadvantages. The system model is shown in Fig. 2.1.

Similar to analysis in (2.32), the autocorrelation of the sequence ŷ(n) is (under

the i.i.d. assumption)

Rŷŷ(l) =

nb−1∑

k=0

b(k)b(k − l) = Rbb(l). (2.35)
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Using the definitions in (2.32) and (2.35) the cost function of the algorithm is (again

in noiseless senario)

JBACS =
nc−1∑

l=0

(Ryy(l)−Rŷŷ(l))
2 =

nc−1∑

l=0

(Rcc(l)−Rbb(l))
2 (2.36)

In order to avoid trivial solution, the unit norm constraint on the equalizer, wTw = 1,

is used. To find the minimums of the cost surface, a stochastic gradient descent

algorithm is applied:

fn+1 = fn − 1

2
µ∇fJ (n)

∇fJ (n) =


∇wJ (n)

∇bJ (n)


 ,

(2.37)

where µ is the step size and ∇f , ∇w and ∇b are gradients of the cost function with

respect to f , w and b, respectively. These gradients of the JBACS−SI w.r.t. w and b

are

∇wJ (n) = 2
Lc∑

l=0

(Ryy (l)−Rbb (l))∇wRyy (l) (2.38)

and

∇bJ (n) = 2
Lc∑

l=0

(Ryy (l)−Rbb (l)) (bup (l) + bdn (l)) , (2.39)

where the bup (l) and bdn (l) vectors are defined as bup (l) =
[
bl · · · bnb−1 01×l

]T

and bdn (l) =
[
01×l b0 · · · bnb−l−1

]T

.1

Because the cost surface is multimodal with groups of minima (related to each

other) having identical costs, a stochastic gradient descent algorithm is derived to find

one of these minima in order to access the others. Although the minima optimize the

BACS-SI cost surface, only one of them actually performs the best shortening (in the

sense of criterion (2.40) below). In the second phase of the algorithm, a GA based

1For the expectation terms, MA and AR estimates are the same as in the SAM algorithm. Details
of the algorithm and bup(l) and bdn(l) derivations are in [31]
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method is proposed to find this minimum and the corresponding equalizer and TIR

taps, considering a fitness function derived from the pilot tone utilized in ADSL:

min
(w,b)

∑

k∈K

|R(k)− 1|2 , (2.40)

where K is the set of pilot tones define in [44]. Actually, the 64th tone in the ADSL

standard is reserved as a pilot signal for timing recovery and is set to 1, i.e. R(64) = 1

[44,45].

2.3 Genetic Algorithm

The Genetic Algorithm (GA) is an optimization method based on the principles

of natural selection and genetics. GA is first developed by John Holland [46] and was

improved by his student David Goldberg [47]. A GA evolves a population composed of

many individuals under some selection rules to maximize the fitness (or minimize the

cost). In every iteration, the strongest/fittest individual is kept inside the population

and the optimum solution is found by generating new children from these best parents.

Because the new generation has some specifications from their parents, the next step

is better and the solution can be reached quickly.

Some of the advantages of a GA include that it

• Optimizes with continuous or discrete variables,

• Doesn’t require derivative information,

• Simultaneously searches from a wide sampling of the cost surface,

• Deals with a large number of variables,

• Is well studied for parallel computers,

• Optimizes variables with extremely complex cost surfaces (they can
jump out of a local minimum),

• Provides a list of optimum variables, not just a single solution,

• May encode the variables so that the optimization is done with the
encoded variables, and

• Works with numerically generated data, experimental data or ana-
lytical functions [48].
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The GA is not the best method to solve every problem. For instance, for

a convex analytical function of only a few variables, other methods are relatively

better and find the solution quickly while the GA is still analyzing the costs of initial

population. However, the advantages listed above (especially avoiding local minima)

recommend the GA for higher level problem solutions and global search techniques

[48].

Defining the optimization variables, the cost function and the cost are the first

steps in starting a GA. The GA ends by testing convergence, as in other optimization

techniques. A flowchart of a GA is shown in Fig. 2.6.

2.3.1 Selecting the Variables and the Cost Function. A cost function may

depend on just one variable, such as a mathematical function or an experiment, or

it may depend on many variables. After defining the cost function, the variables to

be optimized are converted to a continuous or binary system (for a binary GA or

continuous GA) called genes. In binary GA, the variables (genes) are coded to 0 or

1. Choromosomes can be formed by combining the genes. A choromosome which is

formed of Nvar genes of Ngene length is shown below

choromosome =


1111001001︸ ︷︷ ︸

gene1

0011011111︸ ︷︷ ︸
gene2

. . . 0000101001︸ ︷︷ ︸
geneNvar


 .

2.3.2 Initial Population. The GA starts with a group of choromosomes

created with random numbers known as the initial population. Usually population

size is determined by users. If the population size is large enough, a detailed search

of the cost surface can be managed. Each row in the population matrix corresponds

to a chromosomes, and these chromosome are sent to the cost function for evaluation.

2.3.3 Natural Selection. Survival of the fittest in nature means to keep the

choromosomes with the lowest cost/highest fitness in the population in GA. Before

selection, chromosomes are sorted lowest to highest (or highest to lowest if the search
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Figure 2.6: Flowchart of a GA.
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is for a maximum)2. The user defined selection rate determines the surviver number

(only the best are selected) for the mating. Later a pair is selected to generate new

individuals from the chromosomes that are kept. The pair selection methods can be

different [48]:

1. Selecting the best and the worst (top and bottom) based on their costs

2. Random selection

3. Weighted random selection. The selection probability of the best chromosome

is higher.

4. Tournement selection. Pairs are selected from two or more subsets.

2.3.4 Mating. Mating is one of the GA steps that creates new children

from the parents. The most common form of the mating process randomly selects

a crossover point between the first and the last digit of parent chromosomes and

switches the remianing parts of the chromosomes with each other. As seen in Fig.

2.7, the first part of the parent1 and the second part of the parent2 generate the

child1 and the second part of the parent1 and the first part of the parent2 generate

the child2. Mating can be achieved by different methods. For example, two or more

crossover points can be selected, and parts of the chromosomes between crossover

points can be switched among them.

2.3.5 Mutation. The sequence of a gene can be altered in many ways,

including environmental factors, living standards etc. Mutation keeps the algorithm

from converging too fast to local minima before searching the whole surface. Mutation

alters the randomly selected bits of randomly selected chromosomes from 1 to 0 or

0 to 1 according to a user-specified mutation rate. Also in this step, selection can

be applied randomly or can be user selected. But, applying mutation to many bits

increases convergence time.

2After this point, only minimizing a function based on the binary GA will be considered.
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Figure 2.7: Two parents mate to generate two children. Then,
these two children are added to the population.

2.3.6 The Next Generation and Convergence. After mutation, the algorithm

goes to the first step to produce a new population and better individuals. After some

iterations, chromosomes remain the same and the cost function does not change.

At this point, the algorithm should be stopped. The algorithm is stopped when

the predetermined iteration number or the minimum cost is reached. Every other

iteration, the minimum cost or iteration number is checked for stopping the algorithm.
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III. Bit-Error-Rate-Minimizing Channel Shortening using

Post-FEQ Diversity Combining and a Genetic Algorithm

I
n cyclic prefixed systems, the channel delay spread should be shorter than the CP.

If so, the equalization can be done by a frequency domain equalizer (FEQ), which

is just a bank of complex scalars. If not, a Channel Shortening Equalizer (CSE) or

Time domain Equalizer (TEQ) is used at the receiver front-end to shorten the channel

to the desired length. Once a shortened channel is obtained, equalization can be done

straightforwardly.

DMT systems, especially digital subscriber lines, initially gained prominence

in wireline applications. In DSL, system performance is measured by bit rate not

exceeding a given bit error rate (BER). Thus, previous works have attempted to

maximize the bit rate [17,23,26,27,32]. In contrast, OFDM systems have a fixed bit

loading algorithm at the transmitter, and the performance metric is minimization of

the BER.

Since the channel changes more frequently in wireless systems, the adaptive

channel shorteners and FEQs are more important. Adaptive channel shortening has

been examined in many papers [28–31]. However, the adaptive FEQ design has not

been examined except in [49]. Also, most channel shortening and frequency domain

equalizer algorithms assume knowledge of the channel via a training signal, but in

time-varying environments, the training data must be sent over again, which reduces

the throughput of the system.

This chapter has two sections. In section 3.1, the system architecture is modi-

fied to obtain a lower BER in the context of [49]. The recursive least squares (RLS)-

like implementation of the Multicarrier Equalization by Restoration of Redundancy

(MERRY) channel shortener is used to shorten the channel, and three types of adap-

tation rules, i.e., DD-Least Mean Squared (LMS), DD-Recursive Least Squares (RLS),

and Constant Modulus Algorithm (CMA), are used to adapt the FEQs. To provide

the minimum BER, different types of diversity combining are considered.
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Figure 3.1: SIMO multicarrier system model.

In section 3.2, a CSE design is used that attempts to minimize the BER at the

output of the traditional receiver using Genetic Algorithm (GA), which is a global

search method based on the principles of natural selection and genetics.

3.1 BER Minimizing Channel Shortening using Post-FEQ Diversity

Combining

First assume a Single-Input Multiple-Output (SIMO) multicarrier system with

different post-FEQ diversity combining techniques. Figs. 3.1, 3.2 and 3.3 show a

typical SIMO multicarrier system and the proposed post-FEQ diversity combining

techniques. Fig. 3.1 shows the traditional architecture and has 1 FFT, and Figs.

3.2 & 3.3 show proposed variations that have 2 FFTs and P FFTs. All 3 have P

receive antennas. Traditional receiver architecture cannot restore the values of the

tones affected by deep fades. On the other hand, new architectures may combine

different paths to obtain the values of tones.

The proposed architectures generalize the existing architecture by moving the

diversity combining point from before the FFT/FEQ to after the FFT/FEQ, thus

allowing for different FEQ coefficients for each path.

The frequency domain bins (generally modulated with quadrature amplitude-

modulation (QAM)) are blocked into groups of size N . In order to obtain the trans-
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Figure 3.2: Post-FEQ diversity combining with 2 FFT.

Figure 3.3: Post-FEQ diversity combining with individual
FFT.
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mitted signal, these blocks, e.g., the kth block X(k), are transformed into the time

domain by taking an inverse fast Fourier transform (IFFT). The last v samples of

each block are appended to the beginning of the block as a cyclic prefix. Then these

M = N + v samples are transmitted serially. Since the CP is added, the first v

transmitted data samples, denoted x(i), equal the last v samples, i.e.,

x(Mk + i) = x(Mk + i + N), i ∈ 1, 2, ..., v. (3.1)

The received data from the pth path rp is

rp(i) =

Lh−1∑

l=0

hp(l)x(i− l) + np(i), p ∈ 1, . . . , P, (3.2)

and the equalized data, i.e., the output of the pth CSE, is

yp(i) =
Lw−1∑

l=0

wp(l)rp(i− l)

=
Lc−1∑

l=0

cp(l)x(i− l) +
Lw−1∑

l=0

wp(l)np(i− l). (3.3)

This output is shown as the final output of the system in Fig. 3.3. For the systems

in Fig. 3.1 and Fig. 3.2, outputs can be obtained straightforwardly as

y(i) =
P∑

p=1

yp(i) (3.4)

and

y1(i) =

P/2∑
p=1

yp(i) (3.5a)

y2(i) =
P∑

p=P/2+1

yp(i). (3.5b)
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The channel hp, the CSE wp, and the shortened channel cp = hp ? wp, have lengths

Lh, Lw, and Lc = Lh + Lw − 1.

3.1.1 Review of the RLS-MERRY Algorithm. In this section, the RLS-

MERRY algorithm is reviewed, and extended to these new architectures. The original

implementation of MERRY algorithm (described in Chapter 2) [28] is an LMS-like

algorithm with a unit norm constraint. In [49], the MERRY algorithm is reformulated

from an eigenvector problem with a unit norm constraint, (UNC), into a least-squares

problem with a unit tap constraint, (UTC), to enable an RLS algorithm instead of

LMS. Additionally, in order to implement a “blind” RLS algorithm to minimize the

MERRY cost function, a pseudo-desired signal is introduced. As indicated in Chapter

2, the cost function of MERRY is

JMERRY =E
[|y(Mk + v + ∆)− y(Mk + v + N + ∆)|2]

∆ ∈ {0, . . . ,M − 1}, (3.6)

where ∆ is the delay.

The error is defined as

y(Mk + v + ∆)− y(Mk + v + N + ∆) = wT r̃(k), (3.7)

where

wT =[wT
1 ,wT

2 , · · · ,wT
P ], (3.8)

r̃T (k) =[r̃T
1 (k), r̃T

2 (k), · · · , r̃T
P (k)] (3.9)
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which consists of

r̃p(k) =




rp(Mk + v + ∆)
...

rp(Mk + v + ∆− Lw)


−




rp(Mk + v + N + ∆)
...

rp(Mk + v + N + ∆− Lw)




for 1 ≤ p ≤ P .

The RLS-like algorithm does not have a desired or training signal for compari-

sion. However, using UTC instead of UNC addresses this problem. The vector w is

truncated by removing w(ip), where ip ∈ [0, Lw − 1]:

wt = [wp(0), wp(1), · · · , wp(ip − 1), wp(ip + 1), · · · , wp(PLw − 1)]T , (3.10)

and similarly for r̃t(k). To simplify the notation, consider the P CSEs, and the CSE

that has a tap constrained to unity to be p = 1, so that w(i1) = 1. Then the cost

function with UTC is

JMERRY = E
[
wT r̃(k)r̃H(k)w∗] (3.11)

= E
[∣∣wT

t r̃t(k) + 1 · r̃i1(k)
∣∣2

]
(3.12)

, E
[∣∣wT

t r̃t(k)− d(k)
∣∣2

]
, (3.13)

where the desired signal is

d(k) = − r̃i1(k) (3.14)

= r1(Mk + v + N + ∆− i1)− r1(Mk + v + ∆− i1).
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Finally, the RLS algorithm is

e(k) = (r1(Mk + v + N + ∆− i1) (3.15)

− r1(Mk + v + ∆− i1))−wT
t (k)r̃t(k)

z(k) = R−1(k)r̃∗t (k) (3.16)

z̃(k) =
z(k)

ρ + r̃T
t (k)z(k)

(3.17)

wt(k + 1) = wt(k) + e(k)z̃(k) (3.18)

R−1(k + 1) =
1

ρ
(R−1(k)− z̃(k)zH(k)). (3.19)

Here ρ stands for the “forgetting factor,” where all data has the same effect when

ρ = 1, and the recent data has further effect when ρ is smaller. The R−1 is initialized

as an identity matrix, i.e., ηI(PLw−1), where η is a large positive constant.

The RLS-MERRY algorithm for Fig. 3.1 is described above. In Figs. 3.2 & 3.3,

the algorithm changes slightly, such as in applying the UTC. For the 2 FFT system

in Fig. 3.2, the CSEs that have a UTC are p = 1 and p = P/2 + 1, and the ith1 and

the ith2 elements are 1, so that 0 ≤ i1 ≤ Lw − 1, P/2Lw ≤ i2 ≤ (P/2 + 1)Lw − 1.

For the P FFT system in Fig. 3.3, each of the P CSEs has a UTC, so that

0 ≤ i1 ≤ Lw − 1, Lw ≤ i2 ≤ 2Lw − 1, etc. The truncated vectors wt (and similarly

for r̃t(k)), for the 2 FFT and P FFT systems are

w1
t =[w1(0), · · · , w1(i1 − 1), w1(i1 + 1), · · · , w1(P/2Lw − 1)] (3.20)

w2
t =[wP/2+1(P/2Lw), · · · , wP/2+1(i2 − 1), wP/2+1(i2 + 1), · · · , wP/2+1(PLw − 1)]T

(3.21)
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w1
t =[w1(0), · · · , w1(i1 − 1), w1(i1 + 1), · · · , w1(Lw − 1)] (3.22a)

w2
t =[w2(Lw), · · · , w2(i2 − 1), w2(i2 + 1), · · · , w2(2Lw − 1)] (3.22b)

...

wP
t =[wP ((P − 1)Lw), · · · , wP (ip − 1), wP (ip + 1), · · · , wP (PLw − 1)]T . (3.22c)

The desired signal for (3.13) is

d#FFT (k) = − r̃i#FFT
(k) (3.23)

= rp(Mk + v + N + ∆− i#FFT )− rp(Mk + v + ∆− i#FFT ).

Note that there are two desired signals for the 2 FFT system and P desired signals

for the P FFT system. The error term in (3.15) and the update rule in (3.18) are

re-written based on these truncated and desired vectors for the RLS algorithm of the

2 FFT and P FFT systems.

3.1.2 Adaptive FEQ. After shortening the channel, an FEQ is used to

eliminate complex-valued flat fading on each tone at the receiver. Since FEQ has an

important role in equalization, it can be updated with an adaptive algorithm. Design-

ing a system which gives a minimum BER, while updating the FEQ is the primary

objective of this work. There are two different new post-FEQ combining techniques,

as shown in Fig. 3.2 and Fig. 3.3, that enable a lower BER. The proposed new ar-

chitectures have an opportunity to combine the values of tones after the IFFT which

are affected by deep fades. For example, assume two different channel responses as in

Fig. 3.4. A tone value can be affected by a response as in Fig. 3.4(a). Also, the same

tone value can be affected by a deep fade as in Fig. 3.4(b). Thus, diversity combining

provides independent samples of each tone. Finally, note that more diversity as in

Fig. 3.3 provides robustness to fades and lower BER, since it is unlikely that both

samples of a tone will contain a fade. Thus, the FEQ adaptation algorithms, i.e.,

LMS, RLS and CMA, are extended to the new diversity combining architectures.
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Figure 3.4: A tone can be affected by different types of fades as in the channels (a)
and (b).

3.1.2.1 Least Mean Square Algorithm. The Least Mean Square (LMS)

algorithm is an adaptive algorithm which uses a gradient-based method of steepest

descent. LMS makes corrections to the weight vector in the direction of the gradient

vector, which eventually leads to the minimum mean square error. The LMS algorithm

is relatively simple compared to other algorithms, i.e., it does not require calculation

of a correlation function or matrix inversion [16].

From the steepest descent algorithm, the adaptation rule is

w(n + 1) = w(n) +
1

2
µ[−∇(E{e2(n)})] (3.24)

where µ is the step size, and e(n) is the error between the output of the system and

the reference (desired) signal, which is

e(n) = [d∗(n)−wHx(n)]. (3.25)

The gradient vector is

∇w(E{e2(n)}) = −2p + 2Rw(n), (3.26)
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where p is the cross-correlation vector and R is the correlation matrix. In the steepest

descent algorithm, p and R must be obtained in real time. The LMS algorithm

simplifies this problem by using instantaneous values instead of actual values of p

and R, i.e.,

R = x(n)xH(n) (3.27)

p = d∗(n)x(n). (3.28)

Finally, the weight update rule is

w(n + 1) = w(n) + µx(n)[d∗(n)− xH(n)w(n)] (3.29)

= w(n) + µx(n)e∗(n). (3.30)

The LMS algorithm is initialized as w(0) for the weight vector at n = 0. Thus,

the LMS algorithm is summarized as follows [16]:

Output, y(n) = wHx(n) (3.31)

Error, e(n) = d∗(n)− y(n) (3.32)

Weight, w(n + 1) = w(n) + µx(n)e∗(n). (3.33)

3.1.2.2 Recursive Least Squares Algorithm. The Recursive Least

Squares (RLS) algorithm finds adaptive filter coefficients that relate to recursively

producing a least squares metric of the error signal [16]. This algorithm depends on

the signals; the minimum mean square error (MMSE) algorithm, however, depends

on statistics. An important feature of the RLS algorithm is its convergence rate. The

convergence rate of RLS is an order of magnitude faster than the LMS algorithm

because the RLS algorithm whitens the input signal by using the matrix inversion.
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The weighted least squares error function is

n∑
i=1

ρn−i |e(i)|2 =
n∑

i=1

ρn−i
∣∣d(i)−wH(n)x(i)

∣∣2 (3.34)

where 0 < ρ ≤ 1 is an exponential weighting factor (forgetting factor) and the error e

is same as in (3.25). This function is minimized by taking the gradient with respect

to w and setting it to zero:

∇w

(
n∑

i=1

ρn−i |e(i)|2
)

= 0. (3.35)

The cross-correlation vector z(n) is then

z(n) =

p∑

l=1

wn(l)

[
n∑

i=1

ρn−i x(i− l)x∗(i− k)

]
=

n∑
i=1

ρn−id(i)x∗(i− k) (3.36)

This form is also

R(n)w(n) = z(n), (3.37)

where R(n) is the weighted auto-correlation matrix. The filter taps are then

w(n) = R−1(n)z(n). (3.38)

In order to compute the least-square estimate for w(n), the inverse of the cor-

relation matrix must be determined. This determination uses the matrix inversion

lemma [16]. Finally, the inverse correlation matrix is

P(n) = R−1(n)

= ρ−1P(n− 1)− g(n)xT (n)ρ−1P(n− 1), (3.39)

42



where the gain vector g(n) is

g(n) = ρ−1P(n− 1)x∗(n)
{
1 + xT (n)ρ−1P(n− 1)x∗(n)

}−1
(3.40)

= P(n− 1)x∗(n)
{
ρ + xT (n)P(n− 1)x∗(n)

}−1
. (3.41)

This vector is

g(n) = P(n)x∗(n). (3.42)

Finally, the recursive solution of the weighted tap vector is

w(n) = P(n)z(n)

= ρP(n)z(n− 1) + d(n)P(n)x∗(n) (3.43)

with

w(n) = w(n− 1) + g(n)
[
d(n)− xT (n)w(n− 1)

]
(3.44)

= w(n− 1) + g(n)α(n), (3.45)

where α(n) = d(n) − xT (n)w(n − 1) is the a priori error. Comparing with the a

posteriori error, the error calculated after the filter is updated:

e(n) = d(n)− xT (n)w(n). (3.46)

The RLS algorithm is summarized as follows [16]:

Parameters:

Lw = filter order

λ = forgetting factor

δ = value to initialize P(0) =





small positive constant for high SNR

large positive constant for low SNR
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Initialization:

w(n) = 0

P(0) = δ−1I,

where I is the (Lw + 1)× (Lw + 1) identity matrix.

Computation: For n = 0, 1, 2, . . .

x(n) =




x(n)

x(n− 1)
...

x(n− Lw)




(3.47)

α(n) = d(n)−w(n− 1)Tx(n) (3.48)

g(n) = P(n− 1)x∗(n)
{
λ + xT (n)P(n− 1)x∗(n)

}−1
(3.49)

P(n) = λ−1P(n− 1)− g(n)xT (n)λ−1P(n− 1) (3.50)

w(n) = w(n− 1) + α(n)g(n). (3.51)

3.1.2.3 Constant Modulus Algorithm. The Constant Modulus Al-

gorithm (CMA) is a well known and commonly applied blind technique (Bussgang

method) developed by Godard [50] and Treichler and Agee [51]. CMA uses the con-

stant modulus criterion in its cost function drives the output signal to a constant

amplitude. The cost function is

JCM(n) = E
[(|y(n)|2 − γ

)2
]
. (3.52)

Here γ denotes the dispersion constant and is γ = E[|x(n)|4]
E[|x(n)|2]

. The error term in (3.30) for

the LMS algorithm is replaced with e(n) = y(n) (γ − |y(n)|2). Also, γ is chosen with

respect to modulation type. For instance, for the M-ary Phase Shift Keying (M-PSK),

γ = 1.0 and for 16 Quadrature Amplitude Modulation (16-QAM), γ = 1.32 [40].
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Many modulation schemes, such as Gauss Minimum Shift Keying (GMSK), M-PSK

and Frequency Modulation (FM), produce waveforms that have a constant envelope.

However, the CMA can be used to equalize source constellations that do not have

a constant envelope, i.e., 16-QAM [40]. The CMA is robust to carrier-phase offset

because the cost function, (3.52), is insensitive to the phase of y(n).

3.1.2.4 Application of the LMS, RLS and CMA Algorithms to the FEQ.

The LMS, RLS and CMA algorithms are expressed in terms of the FEQ. Denote

the NP × 1 FEQ vector as

DT = [ DT
1 , DT

2 , · · · , DT
P ]T (3.53)

with pth input vector (FFT output) up(k) = FFT (yp(i)). Note that for 1 FFT system

in Fig. 3.1, p = 1 and u(k) = FFT (y(i)), for 2 FFT system in Fig. 3.2, p ∈ 1, 2 and

u1(k) = FFT (y1(i)), u2(k) = FFT (y2(i)). Define an N × NP FEQ input matrix

U(k):

U(k) =
[
diag[u1(k)] | diag[u2(k)] | · · · | diag[uP (k)]

]
. (3.54)

First, consider the LMS algorithm which is used for initializing the DD-LMS

algorithm, where the DD-LMS is used when the training is not available. The N ×
1 error vector is e(k) = X(k) − X̂(k), where X(k) and X̂(k) = U(k)D are the

transmitted and estimated signal vectors. The cost function is the norm squared

function of this vector:

Jmse =E[eH(k)e(k)]

=E

[(
X(k)− X̂(k)

)H (
X(k)− X̂(k)

)]
. (3.55)

A typical LMS update rule for FEQ coefficients is

Dlms(k + 1) = Dlms(k)− µ[∇DJmse], (3.56)
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where the gradient of the cost function is

∇DJmse = −UH
(
X(k)− X̂(k)

)
. (3.57)

In defining an RLS algorithm, the cost function is

Jmse =DHE
[
UH(k)U(k)

]
D

−DHE
[
UH(k)X(k)

]− E
[
XH(k)U(k)

]
D

+ E
[
XH(k)X(k)

]
. (3.58)

With the matrix R = E
[
UH(k)U(k)

]
and the vector P = E

[
UH(k)X(k)

]
, the

optimum FEQ vector is

Dopt = R−1P. (3.59)

Finally, the recursive algorithm is

R(k) =ρrls

(
R(k − 1) + UH(k)U(k)

)
(3.60)

P(k) =ρrls

(
P(k − 1) + UH(k)X(k)

)
(3.61)

Drls =R−1(k)P(k), (3.62)

where ρrls is a “forgetting factor” that is slightly less than one (in general). In this

recursive algorithm, R and P are initialized to all zeros, but the FEQ vector D is

initialized to all ones. Note that the recursion R is block diagonal and the inverse of

R can be computed easily with Schur complements [52].

These algorithms can be used when training is available, but when it is not

decisions can be made on the output data. Then the LMS and the RLS are decision

directed (DD):

Dddlms(k + 1) = Dddlms(k) + µUH
(
Q

[
X̂(k)

]
− X̂(k)

)
(3.63)
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Pddrls(k) = ρrls

(
Pddrls(k − 1) + UH(k)Q

[
ˆX(k)

])
, (3.64)

where Q[·] quantizes the data to the nearest constellation point.

One of the alternative methods is the constant modulus algorithm. Consider

the cost function

Jcma = E

[
N∑

i=1

(∣∣∣X̂i(k)
∣∣∣
2

− γi

)2
]

(3.65)

where γi is a constant representing the modulus of one tone and is chosen as the

modulus of the source signal, for example, for QAM constellations, γ = [1, 1, · · · , 1].

The adaptation rule with respect to CMA cost function is

Dcma(k + 1) = Dcma(k)− µUH
((

X̂∗(k)¯ X̂(k)− γ
)
¯ X̂(k)

)
, (3.66)

where ¯ stands for element-by-element (Hadamard) multiplication.

3.2 BER Minimizing Channel Shortening with a Genetic Algorithm

The bit error rate minimizing channel shortening equalizer design is not well

studied among the CSE design algorithms in the literature. Most CSE designs have

attempted to maximize the bit rate. In [12], CSE designs that minimize the BER at

the output of the receiver are investigated. Iteratively Reweighted (IR) and Gauss-

Newton (GN) Minimum Error Rate (MER) update rules are derived to minimize the

multicarrier system, and a greedy search as a heuristic approach for minimizing the

SCCP BER model is proposed in [12]. The IR method uses a standard weighted

least squares technique to minimize an objective function. However, GN is used to

solve non-linear least squares problems. In both algorithms, there are computational

complexities, such as taking gradients to minimize the cost function. In this section,

we explore the CSE design algorithm in the context of [12] using a Genetic Algorithm,

which is simpler than previous methods.
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3.2.1 System Model. The MIMO multicarrier system model is shown in Fig.

1.1. In wireless LANs, there are Na active tones out of N tones, i.e. Na = 52 tones

are used to transmit data out of N = 64 tones for IEEE 802.11a and HIPERLAN/2

[53, 54]. The set of active tones is Sa. An N size data symbol is formed by an Na

size finite alphabet data symbols and zero padded to length N . As indicated in the

previous chapter, IFFT are taken and a cyclic prefix is inserted in the transmitter.

Note that l ∈ {1, . . . , L} is the index of the transmit antenna, p ∈ {1, . . . , P} is

the index of the receive antenna, k is the block index, n is the tone index, and i is

the sample index.

The received signal is

y(i) =




HT
1,1, · · · , HT

L,1

...
. . .

...

HT
1,P , · · · , HT

L,P




︸ ︷︷ ︸
HT

x(i) + n(i), (3.67)

where x(i) =
[
xT

1 (i), . . . , xT
L(i)

]T

is the transmitted signal vector, n(i) = [nT
1 (i), . . . ,

nT
P (i)]T is the noise vector, and Hl,p is the channel convolution matrix. The output

of the CSEs (also the input of the FFT) is

ũ(i) = wTy(i). (3.68)

Note that the w and y vectors are w =
[
wT

1 , . . . , wT
P

]T

and y(i) =
[
yT

1 (i), . . . , yT
P (i)

]T

.

After discarding the CP and taking the FFT, the FEQ input vector is

u(k) = F ũ(k), (3.69)
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where F denotes the FFT operation. Assuming that the transmit antenna is l = 1,

the estimate of the data is the output of the FEQ:

x̂1(k) = d̃0 ¯ u(k), (3.70)

where ¯ denotes element-by-element multiplication and d̃0 contains the FEQ d̃, a

bank of Na complex scalars zero-padded to length N .

The SCCP model as in Fig. 1.2 is similar to the multicarrier model. However,

since the transmitter operates in the time domain, there are no null tones, Na = N .

Keep the same notation as in the multicarrier model, the FEQ output is

û(k) = d̃¯ u(k) (3.71)

where FEQ vector d̃ is not zero-padded. Finally, the IFFT output vector is

x̂1(k) = FHû(k). (3.72)

3.2.2 BER Models.

3.2.2.1 Multicarrier BER Model. The IEEE 802.11a and HIPER-

LAN/2 wireless LAN standards support 4-QAM, 16-QAM and 64-QAM, so the M -

level QAM signalling is assumed for the BER computation in this work. Also, it is

assumed that the total residual interference and the noise at the output of each tone

has a Gaussian PDF. The probability of bit error of the PAM components is [55]

P√M(n) = 2

(
1− 1√

M

)
Q

(√
3

M − 1
SNRn

)
, (3.73)

and the Symbol Error Rate (SER) on tone n is

PM(n) = 2P√M(n)− (
P√M(n)

)2
, (3.74)

49



where SNRn is the subchannel SNR (SNR on tone n), and Q(·) is the Q-function.

Without loss of generality, the M = 4 case is assumed for simplicity of notation,

where the BER (3.73) reduces to Q(
√
SNRn). The BER and the SER are found by

averaging (3.73) and (3.74) over all of the active tones:

BERmcm =
1

Na

∑
n∈Sa

Q(
√
SNRn) (3.75)

SERmcm =
1

Na

∑
n∈Sa

(
2Q(

√
SNRn)−Q2(

√
SNRn)

)
. (3.76)

3.2.2.2 Multicarrier Subchannel SNR Model. The subchannel SNR is

modeled in different ways in the literature, but most are as in (2.13):

SNRn =
wHBnw

wHAnw
, (3.77)

where An and Bn are Hermitian positive semi-definite matrices.

The FFT output is

F (Ykw)︸ ︷︷ ︸
u(k)

= (FYk)︸ ︷︷ ︸
Ỹk,N

w, (3.78)

where Yk is a N×(PLw) block Toeplitz matrix, where each N×Lw sub-block contains

the data that is convolved with the pth CSE wp, and successive rows are vectors yT (i)

for successive values of i. Note that Ỹk,N is an N × (PLw) matrix with the nth row

is ỹk,N [12]. The correlation terms are

σ2
n , E {|x̃∗1(k)[n]|2} (3.79)

ϕn , E {x̃∗1(k)[n]ỹk,n} (3.80)

C2
n , E {

ỹH
k,nỹk,n

}
(3.81)

with dimensions 1× 1, 1× PLw and PLw × PLw, [12].
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The subchannel SNR is measured at the output of the FEQ, where the desired

signal is an undistorted copy of the transmitted signal. Also, the error is total inter-

ference and noise for block k and tone n, i.e. ẽk,n = d̃nỹk,nw − x̃1(k)[n]. Thus, the

subchannel SNR on tone n is the ratio of the power of the desired signal to the power

of the error [12]:

SNRn =
σ2

n

E{|ẽk,n|2} =
σ2

n

E{|d̃nỹk,nw − x̃1(k)[n]|2} (3.82)

=
σ2

n

|d̃n|2wHC2
nw − d̃nϕnw − d̃∗nϕ∗nw∗ + σ2

n

. (3.83)

If the correlation of the input and output on tone n are set equal to the transmitted

power on tone n, the unbiased MMSE FEQ is [12]

d̃uMMSE
n =

σ2
n

ϕnw
. (3.84)

Substituting the (3.84) into (3.83) yields

SNRn =
1

σ2
n

(
wHC2

nw
wHϕH

n ϕnw

)
− 1

(3.85)

=
wHBnw

wHAnw
(3.86)

with

An = σ2
nC

2
n − ϕH

n ϕn (3.87)

Bn = ϕH
n ϕn. (3.88)

3.2.2.3 SCCP BER Model. Due to the lack of null tones in SCCP,

i.e., Na = N , the SCCP BER is averaged over all N samples of the IFFT output.

Under the same assumptions as in the multicarrier model, the probability of error on

51



the PAM component of sample m is [55]

P√M(m) = 2

(
1− 1√

M

)
Q

(√
3

M − 1
SNRm

)
, (3.89)

and the SER of sample m is

PM(m) = 2P√M(m)− (
P√M(m)

)2
, (3.90)

where SNRm is the effective signal-to-interference and noise ratio on sample m. The

BER and SER for M = 4 with averaging (3.89) and (3.90) over the N samples are

BERsccp =
1

N

N∑
m=1

Q(
√
SNRm) (3.91)

SERsccp =
1

N

N∑
m=1

(
2Q(

√
SNRm)−Q2(

√
SNRmn)

)
. (3.92)

3.2.2.4 SCCP Output SNR Model. The FFT output is as in (3.78) (as

in multicarrier model). But the FEQ d̃ output is different:

x̂1(k)[m] =
N∑

n=1

Qm,nd̃nỹk,nw, (3.93)

where Qm,n is the m× n (unitary) IFFT matrix Q = FH . The correlation terms are

σ2
m , E {|x̃∗1(k)[m]|2} (3.94)

ϕm,n , E {x̃∗1(k)[m]ỹk,m} (3.95)

C2
m,n , E {

ỹH
k,mỹk,m

}
(3.96)

with dimensions the same as before. Assume the N transmit samples have identical

power, so σ2 is independent of m. The output SNR of sample m is the ratio of the

desired signal power to the error power, i.e., ẽk,m = x̂1(k)[m]− x̃1(k)[m]. Hence, the
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output SNR is

SNRm =
σ2

E{|ẽk,m|2} =
σ2

E
{∣∣∣∑N

n=1 Qm,nd̃nỹk,nw − x̃1(k)[m]
∣∣∣
2
} . (3.97)

Expanding the denominator yields

E{|ẽk,m|2} =
∑
n1,n2

Q∗
m,n1

Qm,n2 d̃
∗
n1

d̃n2w
HC2

n1,n2
w −

∑
n

Qm,nd̃nϕm,nw

+
∑

n

Q∗
m,nd̃∗nϕ

∗
m,nw

∗ + σ2, m ∈ {1, . . . , N}. (3.98)

As in the multicarrier model, the unbiased MMSE FEQ for sample m in SCCP is

E
{

x̃∗1(k)[m]
N∑

n=1

Qm,nd̃nỹk,nw

}
= E {x̃∗1(k)[m]x̃1(k)[m]} (3.99)

N∑
n=1

Qm,nd̃nϕm,nw = σ2, (3.100)

Finally, the output SNR is [12]

SNRm =
σ2

∑
n1,n2

Q∗
m,n1

Qm,n2 d̃
∗
n1

d̃n2w
HC2

n1,n2
w − σ2

. (3.101)

Also, (3.100) in matrix form is

d̃TAmw = σ2, m ∈ {1, . . . , N}, (3.102)

where row Am[n, :] = Qm,nϕm,n. These N equations are gathered into a vector and

solved for d̃ [12]:

d̃ = σ2




wTAT
1

...

wTAT
N




−1 


1
...

1


 . (3.103)
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3.2.3 Applying Genetic Algorithm. The IR and GN-MER algorithms pro-

posed in [12] have some complexities. One is taking derivatives with respect to some

vectors, i.e., w and d. Another is Lagrangian analysis of the cost function. Also,

gradient analysis of the SCCP BER model is mathematically intractable.

For these reasons, the Genetic Algorithm (GA) is proposed, which is simpler

than the discussed algorithms, to minimize the BER model of the multicarrier and

SCCP systems. As indicated in Chapter 2, the GA does not require derivative infor-

mation, and it optimizes variables with extremely complex cost surfaces and searches

from a wide sampling of the cost surface.

In Chapter 2, the GA is considered in general. In this section, the application

of the GA to the proposed CSE technique is considered. The GA used here is a

continuous GA [48].

First, a chromosome of the GA must be determined. Due to searching for the

CSE coefficients which give minimum BER, the CSE coefficients are selected as a

chromosome. A chromosome is formed by the CSE coefficients of size Lw:

chromosome =
[

cw(0) cw(1) · · · cw(Lw−2) cw(Lw−1)

]

︸ ︷︷ ︸
Lw

.

After determining the chromosome, an initial population is gathered with many

different chromosomes. In order to avoid searching the whole space, the population

is not initialized with random numbers but is formed in the neighborhoods of the

Maximum Shortening Signal-to-Noise Ratio (MSSNR) [26]/minimum Interblock In-

terference (Min-IBI) [32] designs. A step size ([-0.1 0.1]) is selected to explore this

neighborhood. The population size is decided by the user (in Chapter 4, population

size is selected as 10).

The costs of each chromosome are calculated using equation (3.75) for a mul-

ticarrier system and (3.91) for an SCCP system. According to the principle of the

survival of the fittest, the five fittest (this number considers half of the population
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Table 3.1: Rank weighting in a GA.

n Chromosome Pn

∑N
i=1 Pi

1 chromosome1 0.3333 0.3333
2 chromosome2 0.2667 0.6
3 chromosome3 0.2 0.8
4 chromosome4 0.1333 0.9333
5 chromosome5 0.0667 1

and can be changed by the user) which give the minimum cost are kept and the others

are discarded from the population.

These (better) chromosomes are called parents and are mated to generate the

new generation. However, the selection method for pairing the chromosomes can be

chosen at this point. Rank weighting is used within the weighted random pairing

methods. In this method, the chromosomes are sorted from lowest to the highest cost

and the selection probability of a rank n chromosome is found as

Pn =
Nkeep − n + 1

Nkeep∑
n=1

n

, (3.104)

where Nkeep is the number of chromosomes that are kept inside the population. As

shown in Table 3.1, the probability of selecting the lowest cost chromosome is higher.

Two children are generated from every parent. In doing this, a crossover point

is randomly selected and, the variables to/from this point are exchanged. A next

generation is formed as follows:

1. Two parents that mate are selected as described above from the population.

2. A crossover point between the first and last digit of a chromosome is randomly

selected.

3. The first part of the parent1 and the second part of the parent2 are combined

to generate the first child.
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Table 3.2: An example of mutation and new population.

Population after mating Cost Population after mutations New cost

[0.21 -0.121 0.002 ... -0.88] 0.1245 [0.21 -0.121 0.002 ... -0.88] 0.1245
[0.45 -0.09 -0.18 ... -0.03] 0.1341 [0.45 -0.09 -0.18 ... -0.03] 0.1341
[-0.62 0.19 0.11 ... 0.22] 0.2145 [-0.62 0.23 0.11 ... 0.22] 0.2167
[-0.34 0.74 0.32 ... -0.11] 0.3267 [-0.34 0.14 0.32 ... −0.67 ] 0.3741
[0.99 0.1 0.01 ... 0.52] 0.3566 [ 0.09 0.21 0.01 ... 0.72 ] 0.1127
[0.21 0.801 -0.118 ... -0.103] 0.4132 [0.21 0.801 -0.118 ... -0.103] 0.4132
[0.43 0.88 -0.77 ... -0.221] 0.4629 [0.43 -0.288 -0.77 ... -0.221] 0.5288

4. The second part of the parent1 and the first part of the parent2 are combined

to generate the second child.

After generating the new chromosomes, population size attains the initial size.

At this point, mutation is applied to make a detailed search of the cost function and

to avoid converging to local minima. In order to implement mutation, a randomly

selected value in a randomly selected chromosome is changed to a new value within

the step size:

[0.23 0.012 −0.56 · · · −0.023] =⇒ [0.23 0.107 −0.56 · · · −0.023]

The final population is formed by the new chromosomes, and the cost of each

chromosome is calculated after mutation (see Table 3.2). The algorithm then returns

to the beginning to implement the next generation. The number of generations de-

pends on whether an acceptable minimum is reached or a set number of iterations is

exceeded. Here, the iteration criteria to stop the algorithm is selected. (In Chapter

4, the algorithm is stopped after 40 iterations.)
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IV. Simulations and Results

4.1 Results for Post-FEQ Diversity Combining

I
n this section, a multicarrier system with FFT size N = 64 and a CP length of v = 16

is considered. This work can be compared to the IEEE 802.11a and HIPERLAN

standards, but no particular standard is implemented. The SNR in the simulations

is 20 dB, and there are P = 4 receive antennas. Each channel is modeled as a 32-tap

Rayleigh-fading channel with an exponential delay profile and with approximately 32

nonzero taps (about double the CP length). The length of each CSE is Lw = 40 taps

and the CSE/CSEs that has/have a unit tap is p = 1 for 1 FFT system, p = 1 and

p = 3 for 2 FFT system and each CSE has a unit tap for 4 FFT system. In every CSE,

the tap = b(Lw/2)− 1c = 19th tap (selected arbitrarily) is set to one. The forgetting

factor for RLS-MERRY is ρ = 1, and the step size for LMS and CMA algorithms and

for adaptive MMSE is µ = 0.05 and µ = 10−4.

There are bounds on µ, step size parameter of the LMS algorithm, in the liter-

ature. Considering the correlation matrix of input signals, Eqn. (3.27), the step size

is chosen as

0 < µ <
2

λmax

, (4.1)

where λmax is the largest eigenvalue of R [16].

The simulations have two parts. The first part has two CSE adaptation algo-

rithms as RLS-MERRY and Adaptive MMSE (A-MMSE). The second part has the

FEQ adapt with CMA, DD-LMS and DD-RLS algorithms for RLS-MERRY and RLS

for A-MMSE. Fig. 4.1 shows MERRY cost with RLS-like CSE adaptation algorithm

for the old architecture and the two new architectures. The cost is measured as in

(3.13), where outputs can be computed in (3.3), (3.4) and (3.5). These plots show

that MERRY is working if the cost functions decrease, but the relative values of the

cost functions are not significant.

Fig. 4.2 shows BER performance of the proposed post combining techniques

as the FEQ adapts. To obtain these figures, the FEQ is adapted after the CSE has
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Figure 4.1: MERRY Cost vs. CSE iteration. The first sub-
figure (left) shows the system which has 1 FFT , second shows
2 FFT , and third shows P FFT (in this simulation P = 4).

converged. These algorithms are compared with adaptive MMSE in [17] for reference.

In the figure, for instance, RLS-MERRY/CMA indicates that the CSE adaptation

algorithm is RLS-MERRY and FEQ adaptation algorithm is CMA, etc.

As stated in [49] the blind implementations of these algorithms usually do not

converge to adequate FEQ taps. Thus, the semi-blind technique is considered in

simulations which are initializations of DD-LMS and CMA algorithms with a small

number of iterations of LMS, and DD-RLS with a small number of iterations of RLS.

The DD-LMS and CMA algorithms are initialized by 25 iterations of LMS, and the

DD-RLS are initialized by 5 iterations of RLS.

Examining the Fig. 4.2 indicates that the RLS algorithm converges faster and

has BER ≈ 10−2. However, the 2 FFT system in Fig. 3.2 shows better performance,

i.e., ≈ 2.5×10−3 BER, but the P FFT system in Fig. 3.3 shows the best performance,

i.e., a lower BER ≈ 1.5×10−4 . Hence, there is a two order of magnitude improvement,

58



0 10 20 30 40

10
−4

10
−3

10
−2

10
−1

10
0

BER of 4TEQs and 1FFT (as in Fig. 3.1)

B
E

R

symbol index
0 10 20 30 40

10
−4

10
−3

10
−2

10
−1

10
0

BER of 4TEQs and 2FFT (as in Fig. 3.2)

B
E

R

symbol index
0 10 20 30 40

10
−4

10
−3

10
−2

10
−1

10
0

BER of 4TEQs and 4FFT (as in Fig. 3.3)

B
E

R

symbol index

RLS−MERRY/CMA (for CSE/FEQ)
RLS−MERRY/DD−LMS
RLS−MERRY/DD−RLS
A−MMSE/RLS

Figure 4.2: BER vs. FEQ iteration after the CSE has con-
verged. The left subfigure shows the system which has 1 FFT ,
middle shows 2 FFT and right shows P FFT (in this simulation
P = 4).

i.e., 20 dB, in BER. Combining the diversity after the FEQ shows better performance

than combining after the CSE.

4.2 Results for Channel Shortening with GA

In this section, the proposed CSE design is simulated with GA and compared to

several designs in the literature. The compared algorithms are the MSSNR method,

the MMSE method, the MDS method, the min-IBI method, the Gauss-Newton im-

plementation of bit rate maximizing design (GN-BM), the IR-MER method, the GN-

MER method and the greedy minimum error rate (G-MER) method. The simulations

are also compared to the matched filter bound (MFB) and the BER when no CSE is

used.

4.2.1 Results of GA for Multicarrier Systems. Again a wireless system with

N = 64 FFT size, v = 16 CP length, and Na = 52 active tones (12 null tones) as in
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wireless LAN standards, i.e. IEEE 802.11a, HIPERLAN/2 is considered. The active

tones use 4-QAM constellations and the channels are 32 tap Rayleigh fading channels

with exponential delay profiles. There are L = 1 transmit antenna and P = 2 receive

antennas. The CSEs have Lw = 16 taps. The correlation parameters σ2, ϕn and C2
n

are estimated using 2000 symbols of training, and the iterative algorithms (IR-MER,

GN-MER, GN-BM) run for 40 iterations.

The GA has 10 population size, 0.15 mutation rate and 50% of a population is

kept for the next generation. A chromosome is formed by CSE taps, so it has length

32.

The computational complexity is explained in terms of the number of complex

multiply-and-accumulate (MAC) operations. The IR-MER, GN-MER and GA have

(1/2)(PLw)2NaNcorr complex MACs to compute correlations in which Ncorr sym-

bols are used to compute the correlation terms. The IR-MER and GN-MER algo-

rithms require further (3/2)(PLw)2Na + (1/3)(PLw)3 and (PLw)2Na + 4(PLW )Na +

(1/3)(PLw)3 complex MACs per iteration respectively [12]. However, GA requires

further (PLw)NaNpop complex MACs per generation. Because the IR-MER and GN-

MER have 40 iterations in [12], the population and generation size are chosen as

Npop = 10 and Ngen = 7, which gives the GA the same complexity as IR-MER and

GN-MER.

The results are averaged over 500 independent channels, and input and noise

sequences. The BER is measured over 1000 symbols for 0-20 dB SNR, 2000 symbols

for 25 dB SNR and 4000 for 30 dB SNR for each channel realization. The MSSNR

design is used as the initialization for the iterative algorithms and the GA.

Figs. 4.3 and 4.4 show the BER vs. SNR and SER vs. SNR in dB. Below 15

dB there is no need to use MSSNR design compared to no CSE. In order to provide

same complexity with GN-MER and IR-MER, GA uses 10 population size and 7

generation. This is far away from converging to a global minimum. Although the

GA does not have enough generations, it has still better performance than MSSNR
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Figure 4.3: BER vs. SNR for a multicarrier system when
no CSE, MSSNR, min-IBI, GN-BM, IR-MER, GN-MER and
the proposed GA is used. There are two receive antennas , the
channels are Rayleigh fading with 32 taps each, CSE has 16 taps,
and there are 52 active tones and 12 null tones. The CP length
is 16 and all of the iterative algorithms use 40 iterations. The
GA uses 10 population and 7 generation to provide the same
complexity.
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Figure 4.4: SER vs. SNR for a multicarrier system. All of
the conditions are same as in Fig. 4.3

and Min-IBI. So, in general there is no need to use GA, which has same complexity

as IR-MER and GN-MER. However, in the next section, it is shown that GA does

provide an improvement in SCCP systems.

4.2.2 Results of GA for SCCP Systems. The SCCP system with N = 16

FFT size, v = 4 CP length is considered. These parameters are chosen to be consistent

with [12]. The Rayleigh fading channels have 10 taps with exponential delay profiles.

Again, there are L = 1 transmit antennas and P = 2 receive antennas. Each CSE

has Lw = 16 taps. The GA parameters are same as for the multicarrier system.

The correlation terms, σ2, ϕn and C2
n, are estimated using 100 blocks of training,

and the min-IBI design is selected for initialization of the greedy search and the GA.
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The BER is measured over 250 independent channels, with input data and noise

sequences using 2000 blocks of data each.

Complexity is computed to determine the GA population and generation size.

The greedy search and GA require (1/2)(PLw)2N2Ncorr complex MACs to compute

correlation terms. Additionally, the greedy search requires a further (PLw)2N3 com-

plex MACs per iteration [12]. The GA, on the other hand, requires (PLw)2N3Npop

per generation. Because the greedy search has 400 iterations in [12], the population

and generation size are chosen as Npop × Ngen = 400, for example, Npop = 10 and

Ngen = 40.

Fig. 4.5 shows the BER vs. SNR for SCCP. Below 15 dB there is no need to

use MDS and MSSNR designs compared to no CSE. In order to provide the same

complexity with G-MER, the GA uses 10 population size and 40 generations which

is not enough to converge a global minimum. However, below 10 dB GA provides

relatively the same performance as G-MER.

Since some error correction codes operate on symbols rather than bits, the SER

is a better metric than the BER. Then the results for SER show more accurate infor-

mation about the performance of GA. Fig. 4.6 shows SER vs. SNR. Although it does

not have enough population and generation sizes, GA provides better performance

below 17 dB.

When the complexity is not a consideration, the GA can find a better solution.

Figs. 4.7 & 4.8 show results for GA for more populations and generations. The popu-

lation and generation sizes are selected as Npop = 20 and Ngen = 200 for these results.

Both the BER and the SER performances are much better than G-MER. Approx-

imately a factor of 3 magnitude improvement in BER and a factor of 4 magnitude

improvement in SER are obtained with GA. Also, note that the G-MER algorithm

can not find a better solution than the results in figures even if the iteration number

is increased.
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Figure 4.5: BER vs. SNR for SCCP system when no CSE, the
MDS, the MSSNR, the min-IBI, the MMSE, the G-MER and
the proposed GA are used. There are two receive antennas , the
channels are Rayleigh fading with 10 taps each, CSE has 16 taps
and the FFT size is 16. CP length is 4 and all of the iterative
algorithms use 400 iterations, and the GA uses 10 populations
and 40 generations to provide the same complexity.
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Figure 4.6: SER vs. SNR for SCCP system. All of the condi-
tions are same as in Fig. 4.5

Finally, note that GA is a very efficient search method for multimodal cost

functions.
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Figure 4.7: BER vs. SNR for SCCP system when no CSE,
the MDS, the MSSNR, the min-IBI, the MMSE, the G-MER
and proposed GA are used. There are two receive antennas , the
channels are Rayleigh fading with 10 taps each, CSE has 16 taps
and the FFT size is 16. CP length is 4 and all of the iterative
algorithms use 400 iterations, and the GA uses 20 populations
and 200 generations.
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Figure 4.8: SER vs. SNR for SCCP system. All of the condi-
tions are same as in Fig. 4.7
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V. Conclusions

M
ultimedia applications and the development of the Internet require high speed

and wide band digital communications. Inter-Symbol Interference (ISI) is one

of the main problems in these broadband channels. Multicarrier modulation (MCM)

is used to prevent ISI. Examples of wireline MCM systems include power line com-

munications (HomePlug) and digital subscriber lines (DSLs) [56], and examples of

wireless systems include wireless local area network (IEEE 802.11a/g, HIPERLAN/2,

MMAC) [7], wireless metropolitan area networks (IEEE 802.16) [8], digital video and

audio broadcasting in Europe [9, 10], satellite radio (Sirius and XM Radio) [11], and

the proposed standard for multiband ultra wideband (IEEE 802.15.3a).

In MCM, a guard period which is the last v samples of the MCM frame is added

in front of the MCM frame. This type of guard period is called Cyclic Prefix (CP).

If the channel is short, equalization can be done by a Frequency Domain Equalizer

(FEQ), which is a bank of scalars. However, if the channel is longer than the CP, an

equalizer called a Channel Shortening Equalizer (CSE) which shortens the channel

impulse response to the length v or less, is added to the receiver front end.

Most channel shortener design methods in the literature assume knowledge of

channel state information (CSI). This information can be obtained by estimating the

channel. Therefore, a training sequence is sent with the transmitted signal, but this

training reduces the channel capacity. Also, in wireless systems the channel changes

rapidly, and the training must be sent more frequently. Hence, there are blind and

semi-blind methods in channel equalization techniques.

Early channel shortening techniques were based on heuristic objective functions.

In recent algorithms, the goal is maximizing the bit rate for a given Bit Error Rate

(BER), which is a proper performance measurement for wireline multicarrier systems,

e.g., DSL. In contrast, wireless multicarrier, e.g., OFDM, and SCCP systems have a

fixed bit loading algorithm, and the performence metric is the BER for a fixed bit

rate. Additionally, the CSE is updated to minimize the BER for the initial bit loading

even in DSL.
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The main objective of this thesis is to design a CSE and to modify the system

architecture to obtain a lower BER. This thesis has two parts: one explores modifying

an OFDM system architecture and adapting the FEQ to obtain a lower BER; another

proposes to design a CSE adapted with a Genetic Algorithm (GA) to minimize BER.

In the first part, the system architecture is modified to obtain a lower BER

in the context of [49]. The recursive least squares (RLS)-like implementation of the

Multicarrier Equalization by Restoration of RedundancY (MERRY) channel short-

ener is used to shorten the channel. Three types of adaptation rules, i.e., DD-Least

Mean Squared (LMS), DD-Recursive Least Squares (RLS), and Constant Modulus

Algorithm (CMA), are derived for the new architectures and are used to adapt the

FEQs. To minimize BER, different types of diversity combining are considered.

The proposed architectures can be classified as 1 FFT, 2 FFT and P FFT

systems. The 1 FFT system is the traditional OFDM system architecture. The 2

FFT system selects the diversity point after the FFT/FEQ instead of before the FFT.

The P FFT system generalizes the proposed technique. The idea of the architecture

design is to restore the values of the tones affected by deep fades.

Simulation results show that the second proposed technique (P FFT system) has

best performance, i.e., a lower BER. There is a two order of magnitude improvement,

i.e., 20 dB, in BER with the modified system architecture. Thus, combining the

diversity after the FEQ yields better performance than combining after the CSE.

In the second part, a CSE for multicarrier and Single Carrier Cyclic Prefixed

(SCCP) systems is designed by adapting with GA, which is a global search method

based on the principles of natural selection and genetics. The GA fitness function is

the BER. An initial population is formed by a maximum shortening signal-to-noise

ratio (MSSNR) design for the multicarrier system and by a minimum inter block

interference (min-IBI) design for the SCCP system. Mutation is used, which makes

a detailed search of the cost function and avoids convergence to local minima.
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The complexities of the algorithms proposed in [12] and GA are compared in

order to design CSE with comparable complexity but better performance. The sim-

ulation results show that the required small Npop and Ngen sizes do not indicate that

the adaptation of the CSE for multicarrier systems yield better performance than

the algorithms in [12]. However, GA shows better performance for symbol error rate

(SER) in SCCP system between 0 and 17 dB, even though it does not have enough

population and generation size to fully converge.

However, the GA can find an even better solution, i.e., a factor of 3 magnitude

improvement in BER and a factor of 4 magnitude improvement in SER, in a SCCP

system, when increased complexity is not avoided.

Future work can focus on designing an algorithm which has lower complexity

or shows better performance than GA.
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Channel shortening filter design is a widely examined topic in the literature. Most of the channel shortening equalizer
proposals depend on perfect channel state information (CSI). However, this information may not be available in all
situations. In cases where the channel state information is not needed, blind adaptive equalization techniques are
appropriate. In wireline communication systems, the CSE design is based on maximizing the bit rate, but in wireless
systems, there is a fixed bit loading algorithm, and the performance metric is Bit Error Rate (BER) minimization. In
this work, a CSE is developed for multicarrier and single-carrier cyclic prefixed (SCCP) systems which attempt to
minimize the BER. To minimize the BER, a Genetic Algorithm (GA) is used. If the CSI is shorter than the CP, the
equalization can be done by a frequency domain equalizer (FEQ), which is just a bank of complex scalars. However, in
the literature the adaptive FEQ design has not been well examined. The second phase of this thesis focuses on different
types of algorithms for adapting the FEQ and modifying the FEQ architecture to get a lower BER.

adaptive, cyclic prefix, Channel Shortening Equalizer (CSE), Frequency Domain Equalizer (FEQ), Bit Error Rate (BER),
Genetic Algorithm (GA)
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